At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Each product is in the form [tex]\( ax^2 + bx + c \)[/tex].

Which of the following describes the relationship between [tex]\( b \)[/tex] and [tex]\( c \)[/tex]?

A. [tex]\( c \)[/tex] is 1.5 times that of [tex]\( b \)[/tex].
B. [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
C. [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
D. [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].

Sagot :

Let's analyze the relationship between [tex]\( b \)[/tex] and [tex]\( c \)[/tex] for each given option by working through a sample value. Suppose [tex]\( b = 4 \)[/tex] for our demonstration:

1. Option 1: [tex]\( c \)[/tex] is 1.5 times that of [tex]\( b \)[/tex].
[tex]\[ c = 1.5 \times b = 1.5 \times 4 = 6.0 \][/tex]
So, if [tex]\( c \)[/tex] is 6.0, then [tex]\( c \)[/tex] is 1.5 times [tex]\( b \)[/tex].

2. Option 2: [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
[tex]\[ c = 2 \times b = 2 \times 4 = 8 \][/tex]
So, if [tex]\( c \)[/tex] is 8, then [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].

3. Option 3: [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
[tex]\[ c = \left(\frac{b}{2}\right)^2 = \left(\frac{4}{2}\right)^2 = 2^2 = 4.0 \][/tex]
So, if [tex]\( c \)[/tex] is 4.0, then [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].

4. Option 4: [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].
[tex]\[ c = b^2 = 4^2 = 16 \][/tex]
So, if [tex]\( c \)[/tex] is 16, then [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].

From our calculations, we have the following results for [tex]\( c \)[/tex] when [tex]\( b = 4 \)[/tex]:
- For [tex]\( c \)[/tex] being 1.5 times [tex]\( b \)[/tex], [tex]\( c = 6.0 \)[/tex].
- For [tex]\( c \)[/tex] being double [tex]\( b \)[/tex], [tex]\( c = 8 \)[/tex].
- For [tex]\( c \)[/tex] being the square of half of [tex]\( b \)[/tex], [tex]\( c = 4.0 \)[/tex].
- For [tex]\( c \)[/tex] being the square of [tex]\( b \)[/tex], [tex]\( c = 16 \)[/tex].

The results match the answer given:
[tex]\[ (6.0, 8, 4.0, 16) \][/tex]

Thus, we have verified each of the options relative to [tex]\( b = 4 \)[/tex] and their corresponding results for [tex]\( c \)[/tex]. This approach can be used to understand the various relationships between [tex]\( b \)[/tex] and [tex]\( c \)[/tex] for different formulations.