Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the relationship between [tex]\( b \)[/tex] and [tex]\( c \)[/tex] for each given option by working through a sample value. Suppose [tex]\( b = 4 \)[/tex] for our demonstration:
1. Option 1: [tex]\( c \)[/tex] is 1.5 times that of [tex]\( b \)[/tex].
[tex]\[ c = 1.5 \times b = 1.5 \times 4 = 6.0 \][/tex]
So, if [tex]\( c \)[/tex] is 6.0, then [tex]\( c \)[/tex] is 1.5 times [tex]\( b \)[/tex].
2. Option 2: [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
[tex]\[ c = 2 \times b = 2 \times 4 = 8 \][/tex]
So, if [tex]\( c \)[/tex] is 8, then [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
3. Option 3: [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
[tex]\[ c = \left(\frac{b}{2}\right)^2 = \left(\frac{4}{2}\right)^2 = 2^2 = 4.0 \][/tex]
So, if [tex]\( c \)[/tex] is 4.0, then [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
4. Option 4: [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].
[tex]\[ c = b^2 = 4^2 = 16 \][/tex]
So, if [tex]\( c \)[/tex] is 16, then [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].
From our calculations, we have the following results for [tex]\( c \)[/tex] when [tex]\( b = 4 \)[/tex]:
- For [tex]\( c \)[/tex] being 1.5 times [tex]\( b \)[/tex], [tex]\( c = 6.0 \)[/tex].
- For [tex]\( c \)[/tex] being double [tex]\( b \)[/tex], [tex]\( c = 8 \)[/tex].
- For [tex]\( c \)[/tex] being the square of half of [tex]\( b \)[/tex], [tex]\( c = 4.0 \)[/tex].
- For [tex]\( c \)[/tex] being the square of [tex]\( b \)[/tex], [tex]\( c = 16 \)[/tex].
The results match the answer given:
[tex]\[ (6.0, 8, 4.0, 16) \][/tex]
Thus, we have verified each of the options relative to [tex]\( b = 4 \)[/tex] and their corresponding results for [tex]\( c \)[/tex]. This approach can be used to understand the various relationships between [tex]\( b \)[/tex] and [tex]\( c \)[/tex] for different formulations.
1. Option 1: [tex]\( c \)[/tex] is 1.5 times that of [tex]\( b \)[/tex].
[tex]\[ c = 1.5 \times b = 1.5 \times 4 = 6.0 \][/tex]
So, if [tex]\( c \)[/tex] is 6.0, then [tex]\( c \)[/tex] is 1.5 times [tex]\( b \)[/tex].
2. Option 2: [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
[tex]\[ c = 2 \times b = 2 \times 4 = 8 \][/tex]
So, if [tex]\( c \)[/tex] is 8, then [tex]\( c \)[/tex] is double [tex]\( b \)[/tex].
3. Option 3: [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
[tex]\[ c = \left(\frac{b}{2}\right)^2 = \left(\frac{4}{2}\right)^2 = 2^2 = 4.0 \][/tex]
So, if [tex]\( c \)[/tex] is 4.0, then [tex]\( c \)[/tex] is the square of half of [tex]\( b \)[/tex].
4. Option 4: [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].
[tex]\[ c = b^2 = 4^2 = 16 \][/tex]
So, if [tex]\( c \)[/tex] is 16, then [tex]\( c \)[/tex] is the square of [tex]\( b \)[/tex].
From our calculations, we have the following results for [tex]\( c \)[/tex] when [tex]\( b = 4 \)[/tex]:
- For [tex]\( c \)[/tex] being 1.5 times [tex]\( b \)[/tex], [tex]\( c = 6.0 \)[/tex].
- For [tex]\( c \)[/tex] being double [tex]\( b \)[/tex], [tex]\( c = 8 \)[/tex].
- For [tex]\( c \)[/tex] being the square of half of [tex]\( b \)[/tex], [tex]\( c = 4.0 \)[/tex].
- For [tex]\( c \)[/tex] being the square of [tex]\( b \)[/tex], [tex]\( c = 16 \)[/tex].
The results match the answer given:
[tex]\[ (6.0, 8, 4.0, 16) \][/tex]
Thus, we have verified each of the options relative to [tex]\( b = 4 \)[/tex] and their corresponding results for [tex]\( c \)[/tex]. This approach can be used to understand the various relationships between [tex]\( b \)[/tex] and [tex]\( c \)[/tex] for different formulations.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.