At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's determine the slope of each function and see which one is steeper.
### Function 1:
Given points:
- [tex]\(x\)[/tex]-intercept: [tex]\((3, 0)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, 4)\)[/tex]
The formula for the slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Applying the given points to the slope formula:
[tex]\[ m_1 = \frac{4 - 0}{0 - 3} = \frac{4}{-3} = -\frac{4}{3} \][/tex]
So, the slope of Function 1 is [tex]\(-\frac{4}{3}\)[/tex].
### Function 2:
Given the points:
[tex]\((-12, -4)\)[/tex] and [tex]\((-8, -1)\)[/tex]
Using the slope formula for these points:
[tex]\[ m_2 = \frac{-1 - (-4)}{-8 - (-12)} = \frac{-1 + 4}{-8 + 12} = \frac{3}{4} \][/tex]
So, the slope of Function 2 is [tex]\(\frac{3}{4}\)[/tex].
### Comparison:
To determine which slope is steeper, we compare the absolute values of the slopes:
[tex]\[ |\text{slope of Function 1}| = \left|-\frac{4}{3}\right| = \frac{4}{3} \][/tex]
[tex]\[ |\text{slope of Function 2}| = \left|\frac{3}{4}\right| = \frac{3}{4} \][/tex]
Since [tex]\(\frac{4}{3}\)[/tex] is greater than [tex]\(\frac{3}{4}\)[/tex], the slope of Function 1 is steeper.
Thus, the correct answer is:
C. Function 1 has a steeper slope of [tex]\(-\frac{4}{3}\)[/tex].
### Function 1:
Given points:
- [tex]\(x\)[/tex]-intercept: [tex]\((3, 0)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, 4)\)[/tex]
The formula for the slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Applying the given points to the slope formula:
[tex]\[ m_1 = \frac{4 - 0}{0 - 3} = \frac{4}{-3} = -\frac{4}{3} \][/tex]
So, the slope of Function 1 is [tex]\(-\frac{4}{3}\)[/tex].
### Function 2:
Given the points:
[tex]\((-12, -4)\)[/tex] and [tex]\((-8, -1)\)[/tex]
Using the slope formula for these points:
[tex]\[ m_2 = \frac{-1 - (-4)}{-8 - (-12)} = \frac{-1 + 4}{-8 + 12} = \frac{3}{4} \][/tex]
So, the slope of Function 2 is [tex]\(\frac{3}{4}\)[/tex].
### Comparison:
To determine which slope is steeper, we compare the absolute values of the slopes:
[tex]\[ |\text{slope of Function 1}| = \left|-\frac{4}{3}\right| = \frac{4}{3} \][/tex]
[tex]\[ |\text{slope of Function 2}| = \left|\frac{3}{4}\right| = \frac{3}{4} \][/tex]
Since [tex]\(\frac{4}{3}\)[/tex] is greater than [tex]\(\frac{3}{4}\)[/tex], the slope of Function 1 is steeper.
Thus, the correct answer is:
C. Function 1 has a steeper slope of [tex]\(-\frac{4}{3}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.