Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the quotient of the polynomial division [tex]\((x^3 - 3x^2 + 5x - 3) \div (x - 1)\)[/tex]:
1. Setup the division problem: We begin with the dividend [tex]\(x^3 - 3x^2 + 5x - 3\)[/tex] and the divisor [tex]\(x - 1\)[/tex].
2. Divide the leading terms: The leading term of the dividend is [tex]\(x^3\)[/tex] and the leading term of the divisor is [tex]\(x\)[/tex]. Divide [tex]\(x^3\)[/tex] by [tex]\(x\)[/tex] to get the first term of the quotient, which is [tex]\(x^2\)[/tex].
3. Multiply and subtract: Multiply [tex]\(x^2\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(x^3 - x^2\)[/tex]. Subtract [tex]\(x^3 - x^2\)[/tex] from the original dividend [tex]\(x^3 - 3x^2 + 5x - 3\)[/tex]:
[tex]\[ (x^3 - 3x^2 + 5x - 3) - (x^3 - x^2) = -2x^2 + 5x - 3 \][/tex]
4. Repeat the process: Divide the leading term [tex]\(-2x^2\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(-2x\)[/tex]. Multiply [tex]\(-2x\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(-2x^2 + 2x\)[/tex]. Subtract [tex]\(-2x^2 + 2x\)[/tex] from [tex]\(-2x^2 + 5x - 3\)[/tex]:
[tex]\[ (-2x^2 + 5x - 3) - (-2x^2 + 2x) = 3x - 3 \][/tex]
5. Final division: Divide the leading term [tex]\(3x\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(3\)[/tex]. Multiply [tex]\(3\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(3x - 3\)[/tex]. Subtract [tex]\(3x - 3\)[/tex] from [tex]\(3x - 3\)[/tex]:
[tex]\[ (3x - 3) - (3x - 3) = 0 \][/tex]
Since there is no remainder, the quotient of the division is [tex]\(x^2 - 2x + 3\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{x^2 - 2x + 3} \][/tex]
1. Setup the division problem: We begin with the dividend [tex]\(x^3 - 3x^2 + 5x - 3\)[/tex] and the divisor [tex]\(x - 1\)[/tex].
2. Divide the leading terms: The leading term of the dividend is [tex]\(x^3\)[/tex] and the leading term of the divisor is [tex]\(x\)[/tex]. Divide [tex]\(x^3\)[/tex] by [tex]\(x\)[/tex] to get the first term of the quotient, which is [tex]\(x^2\)[/tex].
3. Multiply and subtract: Multiply [tex]\(x^2\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(x^3 - x^2\)[/tex]. Subtract [tex]\(x^3 - x^2\)[/tex] from the original dividend [tex]\(x^3 - 3x^2 + 5x - 3\)[/tex]:
[tex]\[ (x^3 - 3x^2 + 5x - 3) - (x^3 - x^2) = -2x^2 + 5x - 3 \][/tex]
4. Repeat the process: Divide the leading term [tex]\(-2x^2\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(-2x\)[/tex]. Multiply [tex]\(-2x\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(-2x^2 + 2x\)[/tex]. Subtract [tex]\(-2x^2 + 2x\)[/tex] from [tex]\(-2x^2 + 5x - 3\)[/tex]:
[tex]\[ (-2x^2 + 5x - 3) - (-2x^2 + 2x) = 3x - 3 \][/tex]
5. Final division: Divide the leading term [tex]\(3x\)[/tex] by [tex]\(x\)[/tex] to get [tex]\(3\)[/tex]. Multiply [tex]\(3\)[/tex] by the divisor [tex]\(x - 1\)[/tex] giving [tex]\(3x - 3\)[/tex]. Subtract [tex]\(3x - 3\)[/tex] from [tex]\(3x - 3\)[/tex]:
[tex]\[ (3x - 3) - (3x - 3) = 0 \][/tex]
Since there is no remainder, the quotient of the division is [tex]\(x^2 - 2x + 3\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{x^2 - 2x + 3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.