Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Adding which terms to [tex]\(3x^2y\)[/tex] would result in a monomial? Check all that apply.

A. [tex]\(3xy\)[/tex]

B. [tex]\(-12x^2y\)[/tex]

C. [tex]\(2x^2y^2\)[/tex]

D. [tex]\(7xy^2\)[/tex]

E. [tex]\(-10x^2\)[/tex]

F. [tex]\(4x^2y\)[/tex]

G. [tex]\(3x^3\)[/tex]


Sagot :

To determine which terms result in a monomial when added to [tex]\(3x^2y\)[/tex], we need to ensure that the resulting expression is a single term with matching variable parts and exponents.

Consider the given terms to be added to [tex]\(3x^2y\)[/tex]:

1. [tex]\(3xy\)[/tex]
2. [tex]\(-12x^2y\)[/tex]
3. [tex]\(2x^2y^2\)[/tex]
4. [tex]\(7xy^2\)[/tex]
5. [tex]\(-10x^2\)[/tex]
6. [tex]\(4x^2y\)[/tex]
7. [tex]\(3x^3\)[/tex]

### Step-by-Step Analysis:

1. [tex]\(3xy\)[/tex]:
- The term [tex]\(3xy\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], but the exponents do not match [tex]\(3x^2y\)[/tex] (which should have [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex]).
- Result after addition: [tex]\(3x^2y + 3xy\)[/tex]
- This results into a polynomial, not a monomial, because the terms cannot be combined into a single term due to differing exponents.

2. [tex]\(-12x^2y\)[/tex]:
- The term [tex]\(-12x^2y\)[/tex] has the exact same variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex] as [tex]\(3x^2y\)[/tex].
- Result after addition: [tex]\(3x^2y - 12x^2y = -9x^2y\)[/tex]
- This is a single term (monomial).

3. [tex]\(2x^2y^2\)[/tex]:
- The term [tex]\(2x^2y^2\)[/tex] has [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex], not matching [tex]\(3x^2y\)[/tex] (which only has [tex]\(y\)[/tex]).
- Result after addition: [tex]\(3x^2y + 2x^2y^2\)[/tex]
- This results into a polynomial, not a monomial, because the terms cannot be combined into a single term due to differing exponents.

4. [tex]\(7xy^2\)[/tex]:
- The term [tex]\(7xy^2\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex], not matching [tex]\(3x^2y\)[/tex] (which should have [tex]\(x^2\)[/tex]).
- Result after addition: [tex]\(3x^2y + 7xy^2\)[/tex]
- This results into a polynomial, not a monomial, because the terms cannot be combined into a single term due to differing exponents.

5. [tex]\(-10x^2\)[/tex]:
- The term [tex]\(-10x^2\)[/tex] lacks the variable [tex]\(y\)[/tex] entirely.
- Result after addition: [tex]\(3x^2y - 10x^2\)[/tex]
- This results into a polynomial, not a monomial, because the terms cannot be combined into a single term due to differing variables.

6. [tex]\(4x^2y\)[/tex]:
- The term [tex]\(4x^2y\)[/tex] has the exact same variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex] as [tex]\(3x^2y\)[/tex].
- Result after addition: [tex]\(3x^2y + 4x^2y = 7x^2y\)[/tex]
- This is a single term (monomial).

7. [tex]\(3x^3\)[/tex]:
- The term [tex]\(3x^3\)[/tex] has [tex]\(x^3\)[/tex] instead of [tex]\(x^2\)[/tex], not matching [tex]\(3x^2y\)[/tex].
- Result after addition: [tex]\(3x^2y + 3x^3\)[/tex]
- This results into a polynomial, not a monomial, because the terms cannot be combined into a single term due to differing exponents.

### Conclusion:
The terms that would result in a monomial when added to [tex]\(3x^2y\)[/tex] are:
- [tex]\(-12x^2y\)[/tex]
- [tex]\(4x^2y\)[/tex]

So, the correct answers are:
- [tex]\(-12 x^2 y\)[/tex]
- [tex]\(4 x^2 y\)[/tex]