At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To convert the given equation of the circle [tex]\( x^2 + 4x + y^2 - 10y + 13 = 0 \)[/tex] to its standard form, we need to complete the square for both the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms.
1. Completing the square for the [tex]\( x \)[/tex] terms:
The expression [tex]\( x^2 + 4x \)[/tex] can be transformed by completing the square.
- Take the coefficient of [tex]\( x \)[/tex], which is 4.
- Divide it by 2 to get 2, and then square it to get 4.
- So, [tex]\( x^2 + 4x \)[/tex] can be rewritten as [tex]\( (x + 2)^2 - 4 \)[/tex].
2. Completing the square for the [tex]\( y \)[/tex] terms:
The expression [tex]\( y^2 - 10y \)[/tex] can also be transformed by completing the square.
- Take the coefficient of [tex]\( y \)[/tex], which is -10.
- Divide it by 2 to get -5, and then square it to get 25.
- Thus, [tex]\( y^2 - 10y \)[/tex] can be rewritten as [tex]\( (y - 5)^2 - 25 \)[/tex].
3. Rewriting the original equation:
Substitute these completed squares back into the original equation:
[tex]\[ x^2 + 4x + y^2 - 10y + 13 = 0 \][/tex]
becomes:
[tex]\[ (x + 2)^2 - 4 + (y - 5)^2 - 25 + 13 = 0 \][/tex]
4. Combining constants:
Simplify the constants on the left side:
[tex]\[ (x + 2)^2 + (y - 5)^2 - 16 = 0 \][/tex]
Add 16 to both sides to isolate the squared terms:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Thus, the standard form of the equation of the circle is:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Therefore, the correct option is:
[tex]\((x+2)^2+(y-5)^2=16\)[/tex]
The correct answer is:
[tex]\[ \boxed{(x+2)^2+(y-5)^2=16} \][/tex]
1. Completing the square for the [tex]\( x \)[/tex] terms:
The expression [tex]\( x^2 + 4x \)[/tex] can be transformed by completing the square.
- Take the coefficient of [tex]\( x \)[/tex], which is 4.
- Divide it by 2 to get 2, and then square it to get 4.
- So, [tex]\( x^2 + 4x \)[/tex] can be rewritten as [tex]\( (x + 2)^2 - 4 \)[/tex].
2. Completing the square for the [tex]\( y \)[/tex] terms:
The expression [tex]\( y^2 - 10y \)[/tex] can also be transformed by completing the square.
- Take the coefficient of [tex]\( y \)[/tex], which is -10.
- Divide it by 2 to get -5, and then square it to get 25.
- Thus, [tex]\( y^2 - 10y \)[/tex] can be rewritten as [tex]\( (y - 5)^2 - 25 \)[/tex].
3. Rewriting the original equation:
Substitute these completed squares back into the original equation:
[tex]\[ x^2 + 4x + y^2 - 10y + 13 = 0 \][/tex]
becomes:
[tex]\[ (x + 2)^2 - 4 + (y - 5)^2 - 25 + 13 = 0 \][/tex]
4. Combining constants:
Simplify the constants on the left side:
[tex]\[ (x + 2)^2 + (y - 5)^2 - 16 = 0 \][/tex]
Add 16 to both sides to isolate the squared terms:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Thus, the standard form of the equation of the circle is:
[tex]\[ (x + 2)^2 + (y - 5)^2 = 16 \][/tex]
Therefore, the correct option is:
[tex]\((x+2)^2+(y-5)^2=16\)[/tex]
The correct answer is:
[tex]\[ \boxed{(x+2)^2+(y-5)^2=16} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.