Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to examine the given equation and interpret what it represents. The equation given is:
[tex]\[ y = 11x + 25 \][/tex]
where [tex]\( y \)[/tex] is the total cost in dollars for printing [tex]\( x \)[/tex] custom t-shirts.
1. Understand the equation components:
- The slope (coefficient of [tex]\( x \)[/tex]) is [tex]\( 11 \)[/tex]. This means that for each additional t-shirt printed, the cost increases by [tex]\( 11 \)[/tex] dollars.
- The constant term [tex]\( 25 \)[/tex] is the fixed cost, which does not change regardless of the number of t-shirts printed.
2. Break down the impact of adding an additional t-shirt:
- The term [tex]\( 11x \)[/tex] indicates that every additional t-shirt adds [tex]\( 11 \)[/tex] dollars to the total cost.
- [tex]\( 25 \)[/tex] is a fixed cost that covers the initial setup or other fixed expenses and remains constant irrespective of how many t-shirts are printed.
From the structure of the equation [tex]\( y = 11x + 25 \)[/tex], it is clear the variable part, which is [tex]\( 11x \)[/tex], determines how the total cost changes with the number of t-shirts added.
3. Evaluate the statements:
- Statement A: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11\% \)[/tex]". This statement is incorrect because the increase is a fixed amount, not a percentage.
- Statement B: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25 \)[/tex] dollars". This is incorrect as the 25 dollars is a fixed initial cost, not the cost per additional t-shirt.
- Statement C: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11 \)[/tex] dollars". This is correct as represented by the coefficient [tex]\( 11 \)[/tex] in the equation.
- Statement D: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25\% \)[/tex]". This is incorrect as the percentage mentioned does not reflect the fixed increase per t-shirt, which is [tex]\( 11 \)[/tex] dollars.
Therefore, the correct statement is:
[tex]\[ \boxed{\text{C}} \][/tex]
[tex]\[ y = 11x + 25 \][/tex]
where [tex]\( y \)[/tex] is the total cost in dollars for printing [tex]\( x \)[/tex] custom t-shirts.
1. Understand the equation components:
- The slope (coefficient of [tex]\( x \)[/tex]) is [tex]\( 11 \)[/tex]. This means that for each additional t-shirt printed, the cost increases by [tex]\( 11 \)[/tex] dollars.
- The constant term [tex]\( 25 \)[/tex] is the fixed cost, which does not change regardless of the number of t-shirts printed.
2. Break down the impact of adding an additional t-shirt:
- The term [tex]\( 11x \)[/tex] indicates that every additional t-shirt adds [tex]\( 11 \)[/tex] dollars to the total cost.
- [tex]\( 25 \)[/tex] is a fixed cost that covers the initial setup or other fixed expenses and remains constant irrespective of how many t-shirts are printed.
From the structure of the equation [tex]\( y = 11x + 25 \)[/tex], it is clear the variable part, which is [tex]\( 11x \)[/tex], determines how the total cost changes with the number of t-shirts added.
3. Evaluate the statements:
- Statement A: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11\% \)[/tex]". This statement is incorrect because the increase is a fixed amount, not a percentage.
- Statement B: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25 \)[/tex] dollars". This is incorrect as the 25 dollars is a fixed initial cost, not the cost per additional t-shirt.
- Statement C: "Each additional t-shirt being printed will increase the total cost by [tex]\( 11 \)[/tex] dollars". This is correct as represented by the coefficient [tex]\( 11 \)[/tex] in the equation.
- Statement D: "Each additional t-shirt being printed will increase the total cost by [tex]\( 25\% \)[/tex]". This is incorrect as the percentage mentioned does not reflect the fixed increase per t-shirt, which is [tex]\( 11 \)[/tex] dollars.
Therefore, the correct statement is:
[tex]\[ \boxed{\text{C}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.