Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze each table to determine whether the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is linear or exponential.
### Function A:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 2 \\
\hline
2 & 4 \\
\hline
3 & 8 \\
\hline
4 & 16 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- An exponential function involves a constant multiplicative rate between points.
- Checking ratios:
[tex]\[ \frac{4}{2} = 2, \quad \frac{8}{4} = 2, \quad \frac{16}{8} = 2 \][/tex]
Since the ratios between successive terms are constant (all equal to 2), this indicates an exponential relationship.
Function A is exponential.
### Function B:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 1.44 \\
\hline
4 & 3.6 \\
\hline
6 & 9 \\
\hline
8 & 22.5 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- An exponential function involves a constant multiplicative rate between points.
- Checking ratios:
[tex]\[ \frac{3.6}{1.44} = 2.5, \quad \frac{9}{3.6} = 2.5, \quad \frac{22.5}{9} = 2.5 \][/tex]
Since the ratios between successive terms are constant (all equal to 2.5), this indicates an exponential relationship.
Function B is exponential.
### Function C:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 5 \\
\hline
5 & 12.5 \\
\hline
8 & 20 \\
\hline
11 & 27.5 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- A linear function involves a constant additive rate between points.
- Checking differences:
[tex]\[ 12.5 - 5 = 7.5, \quad 20 - 12.5 = 7.5, \quad 27.5 - 20 = 7.5 \][/tex]
Since the differences between successive terms are constant (all equal to 7.5), this indicates a linear relationship.
Function C is linear.
So, in conclusion:
- Function A is exponential.
- Function B is exponential.
- Function C is linear.
### Function A:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 2 \\
\hline
2 & 4 \\
\hline
3 & 8 \\
\hline
4 & 16 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- An exponential function involves a constant multiplicative rate between points.
- Checking ratios:
[tex]\[ \frac{4}{2} = 2, \quad \frac{8}{4} = 2, \quad \frac{16}{8} = 2 \][/tex]
Since the ratios between successive terms are constant (all equal to 2), this indicates an exponential relationship.
Function A is exponential.
### Function B:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 1.44 \\
\hline
4 & 3.6 \\
\hline
6 & 9 \\
\hline
8 & 22.5 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- An exponential function involves a constant multiplicative rate between points.
- Checking ratios:
[tex]\[ \frac{3.6}{1.44} = 2.5, \quad \frac{9}{3.6} = 2.5, \quad \frac{22.5}{9} = 2.5 \][/tex]
Since the ratios between successive terms are constant (all equal to 2.5), this indicates an exponential relationship.
Function B is exponential.
### Function C:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 5 \\
\hline
5 & 12.5 \\
\hline
8 & 20 \\
\hline
11 & 27.5 \\
\hline
\end{tabular}
To identify if this is linear or exponential:
- A linear function involves a constant additive rate between points.
- Checking differences:
[tex]\[ 12.5 - 5 = 7.5, \quad 20 - 12.5 = 7.5, \quad 27.5 - 20 = 7.5 \][/tex]
Since the differences between successive terms are constant (all equal to 7.5), this indicates a linear relationship.
Function C is linear.
So, in conclusion:
- Function A is exponential.
- Function B is exponential.
- Function C is linear.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.