Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's tackle this problem step-by-step to understand how we derive the correct function notation.
1. Identify the given information:
- You usually maintain a speed of 3 miles per hour.
- [tex]$t$[/tex] is the independent variable, representing time in hours.
- [tex]$h(t)$[/tex] is the dependent variable, representing the distance traveled in miles.
2. Understand the relationship between speed, time, and distance:
- Speed is the rate at which distance changes over time.
- Distance traveled can be calculated with the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
- In this case, speed is 3 miles per hour.
3. Set up the function:
- We are asked to express the distance traveled ([tex]$h(t)$[/tex]) as a function of time ([tex]$t$[/tex]).
- Using the given speed, we can write the distance as:
[tex]\[ h(t) = 3 \times t \][/tex]
- Here, [tex]$h(t)$[/tex] represents the distance, and it is equal to the product of the speed (3 miles per hour) and the time ([tex]$t$[/tex] hours).
4. Match the functional relationship to the given options:
- Option a: [tex]\(h(t) = 3h\)[/tex] ⇒ This incorrectly uses [tex]$h$[/tex] on the right-hand side.
- Option b: [tex]\(h(t) = 3t\)[/tex] ⇒ This correctly represents the relationship where [tex]$t$[/tex] is the independent variable.
- Option c: [tex]\(t(h) = 3t\)[/tex] ⇒ This incorrectly places [tex]$t$[/tex] as the dependent variable.
- Option d: [tex]\(t(h) = 3h\)[/tex] ⇒ This incorrectly changes the roles of the variables.
Thus, the correct function notation that describes the distance traveled as a function of time is:
[tex]\[ \boxed{h(t) = 3t} \][/tex]
Therefore, the correct statement is option b.
1. Identify the given information:
- You usually maintain a speed of 3 miles per hour.
- [tex]$t$[/tex] is the independent variable, representing time in hours.
- [tex]$h(t)$[/tex] is the dependent variable, representing the distance traveled in miles.
2. Understand the relationship between speed, time, and distance:
- Speed is the rate at which distance changes over time.
- Distance traveled can be calculated with the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
- In this case, speed is 3 miles per hour.
3. Set up the function:
- We are asked to express the distance traveled ([tex]$h(t)$[/tex]) as a function of time ([tex]$t$[/tex]).
- Using the given speed, we can write the distance as:
[tex]\[ h(t) = 3 \times t \][/tex]
- Here, [tex]$h(t)$[/tex] represents the distance, and it is equal to the product of the speed (3 miles per hour) and the time ([tex]$t$[/tex] hours).
4. Match the functional relationship to the given options:
- Option a: [tex]\(h(t) = 3h\)[/tex] ⇒ This incorrectly uses [tex]$h$[/tex] on the right-hand side.
- Option b: [tex]\(h(t) = 3t\)[/tex] ⇒ This correctly represents the relationship where [tex]$t$[/tex] is the independent variable.
- Option c: [tex]\(t(h) = 3t\)[/tex] ⇒ This incorrectly places [tex]$t$[/tex] as the dependent variable.
- Option d: [tex]\(t(h) = 3h\)[/tex] ⇒ This incorrectly changes the roles of the variables.
Thus, the correct function notation that describes the distance traveled as a function of time is:
[tex]\[ \boxed{h(t) = 3t} \][/tex]
Therefore, the correct statement is option b.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.