Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the cell potential of the electrochemical cell given the half-reactions:
1. Identify the half-reactions and their standard reduction potentials:
- For the silver half-reaction: [tex]\( \text{Ag}^+ + e^- \rightarrow \text{Ag} \)[/tex], the standard reduction potential is [tex]\( +0.80 \text{ V} \)[/tex].
- For the iron half-reaction: [tex]\( \text{Fe} \rightarrow \text{Fe}^{3+} + 3e^- \)[/tex], the reduction potential for the reverse reaction ( [tex]\( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \)[/tex] ) is [tex]\( -0.77 \text{ V} \)[/tex]. Therefore, the oxidation potential for the iron reaction is the same [tex]\( -0.77 \text{ V} \)[/tex].
2. Determine which reaction is the anode and which is the cathode:
- The half-reaction with the higher reduction potential occurs at the cathode, where reduction takes place. In this case, the silver reaction ([tex]\( \text{Ag}^+ + e^- \rightarrow \text{Ag} \)[/tex]) has a reduction potential of [tex]\( +0.80 \text{ V} \)[/tex].
- The iron reaction ([tex]\( \text{Fe} \rightarrow \text{Fe}^{3+} + 3e^- \)[/tex]) occurs at the anode, where oxidation takes place, with an effective reduction potential of [tex]\( -0.77 \text{ V} \)[/tex].
3. Calculate the cell potential:
- Use the formula for the cell potential:
[tex]\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \][/tex]
- Plugging in the given values:
[tex]\[ E^\circ_{\text{cell}} = 0.80 \text{ V} - (-0.77 \text{ V}) = 0.80 \text{ V} + 0.77 \text{ V} = 1.57 \text{ V} \][/tex]
Therefore, the cell potential is [tex]\( \boxed{1.57 \text{ V}} \)[/tex].
Given the options [tex]\(A. -0.44 V\)[/tex], [tex]\(B. -1.24 V\)[/tex], [tex]\(C. 0.44 V\)[/tex], [tex]\(D. 1.24 V\)[/tex], none of them match the calculated cell potential of [tex]\(1.57 \text{ V}\)[/tex], making it clear there is likely a problem with the given multiple-choice options or the way the values were combined.
However, if required to choose one of the options provided and there was a typo in them, the calculation definitively satisfies that [tex]\( \boxed{1.57 \text{ V}} \)[/tex] would be the correct approach. In scenarios where options need fitting, verification or problem context correct suiting might provide [tex]\(C\)[/tex] as potential match being a different understanding. Such mismatch scene typically checked for data entry or context clearly to align.
1. Identify the half-reactions and their standard reduction potentials:
- For the silver half-reaction: [tex]\( \text{Ag}^+ + e^- \rightarrow \text{Ag} \)[/tex], the standard reduction potential is [tex]\( +0.80 \text{ V} \)[/tex].
- For the iron half-reaction: [tex]\( \text{Fe} \rightarrow \text{Fe}^{3+} + 3e^- \)[/tex], the reduction potential for the reverse reaction ( [tex]\( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \)[/tex] ) is [tex]\( -0.77 \text{ V} \)[/tex]. Therefore, the oxidation potential for the iron reaction is the same [tex]\( -0.77 \text{ V} \)[/tex].
2. Determine which reaction is the anode and which is the cathode:
- The half-reaction with the higher reduction potential occurs at the cathode, where reduction takes place. In this case, the silver reaction ([tex]\( \text{Ag}^+ + e^- \rightarrow \text{Ag} \)[/tex]) has a reduction potential of [tex]\( +0.80 \text{ V} \)[/tex].
- The iron reaction ([tex]\( \text{Fe} \rightarrow \text{Fe}^{3+} + 3e^- \)[/tex]) occurs at the anode, where oxidation takes place, with an effective reduction potential of [tex]\( -0.77 \text{ V} \)[/tex].
3. Calculate the cell potential:
- Use the formula for the cell potential:
[tex]\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \][/tex]
- Plugging in the given values:
[tex]\[ E^\circ_{\text{cell}} = 0.80 \text{ V} - (-0.77 \text{ V}) = 0.80 \text{ V} + 0.77 \text{ V} = 1.57 \text{ V} \][/tex]
Therefore, the cell potential is [tex]\( \boxed{1.57 \text{ V}} \)[/tex].
Given the options [tex]\(A. -0.44 V\)[/tex], [tex]\(B. -1.24 V\)[/tex], [tex]\(C. 0.44 V\)[/tex], [tex]\(D. 1.24 V\)[/tex], none of them match the calculated cell potential of [tex]\(1.57 \text{ V}\)[/tex], making it clear there is likely a problem with the given multiple-choice options or the way the values were combined.
However, if required to choose one of the options provided and there was a typo in them, the calculation definitively satisfies that [tex]\( \boxed{1.57 \text{ V}} \)[/tex] would be the correct approach. In scenarios where options need fitting, verification or problem context correct suiting might provide [tex]\(C\)[/tex] as potential match being a different understanding. Such mismatch scene typically checked for data entry or context clearly to align.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.