Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The problem involves calculating the probability of rolling a 4 exactly 2 times when a number cube (die) is rolled 7 times. We'll follow these steps:
1. Identify the components of the binomial probability formula:
[tex]\[ P(k \text{ successes}) = { }_n C_k \, p^k \, (1-p)^{n-k} \][/tex]
where:
- [tex]\( n \)[/tex] is the number of trials (7 rolls of the die).
- [tex]\( k \)[/tex] is the number of successes (rolling a 4 exactly 2 times).
- [tex]\( p \)[/tex] is the probability of success on a single trial (rolling a 4), which is [tex]\(\frac{1}{6}\)[/tex].
- [tex]\( 1 - p \)[/tex] is the probability of failure on a single trial (not rolling a 4), which is [tex]\(\frac{5}{6}\)[/tex].
2. Identify the binomial coefficient [tex]\( { }_n C_k \)[/tex]:
[tex]\[ { }_n C_k = \frac{n!}{k!(n-k)!} \][/tex]
For this problem, [tex]\( { }_7 C_2 \)[/tex]:
[tex]\[ { }_7 C_2 = \frac{7!}{2!(7-2)!} = \frac{7!}{2! \cdot 5!} \][/tex]
3. Construct the binomial probability expression:
[tex]\[ P(k=2) = { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
4. Plug in the values and identify the correct choice:
[tex]\[ { }_7 C_2 \, \left(\frac{1}{6}\right)^2 \, \left(\frac{5}{6}\right)^5 \][/tex]
The correct expression representing the probability of rolling a 4 exactly 2 times in 7 rolls is:
[tex]\[ { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
1. Identify the components of the binomial probability formula:
[tex]\[ P(k \text{ successes}) = { }_n C_k \, p^k \, (1-p)^{n-k} \][/tex]
where:
- [tex]\( n \)[/tex] is the number of trials (7 rolls of the die).
- [tex]\( k \)[/tex] is the number of successes (rolling a 4 exactly 2 times).
- [tex]\( p \)[/tex] is the probability of success on a single trial (rolling a 4), which is [tex]\(\frac{1}{6}\)[/tex].
- [tex]\( 1 - p \)[/tex] is the probability of failure on a single trial (not rolling a 4), which is [tex]\(\frac{5}{6}\)[/tex].
2. Identify the binomial coefficient [tex]\( { }_n C_k \)[/tex]:
[tex]\[ { }_n C_k = \frac{n!}{k!(n-k)!} \][/tex]
For this problem, [tex]\( { }_7 C_2 \)[/tex]:
[tex]\[ { }_7 C_2 = \frac{7!}{2!(7-2)!} = \frac{7!}{2! \cdot 5!} \][/tex]
3. Construct the binomial probability expression:
[tex]\[ P(k=2) = { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
4. Plug in the values and identify the correct choice:
[tex]\[ { }_7 C_2 \, \left(\frac{1}{6}\right)^2 \, \left(\frac{5}{6}\right)^5 \][/tex]
The correct expression representing the probability of rolling a 4 exactly 2 times in 7 rolls is:
[tex]\[ { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.