At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The problem involves calculating the probability of rolling a 4 exactly 2 times when a number cube (die) is rolled 7 times. We'll follow these steps:
1. Identify the components of the binomial probability formula:
[tex]\[ P(k \text{ successes}) = { }_n C_k \, p^k \, (1-p)^{n-k} \][/tex]
where:
- [tex]\( n \)[/tex] is the number of trials (7 rolls of the die).
- [tex]\( k \)[/tex] is the number of successes (rolling a 4 exactly 2 times).
- [tex]\( p \)[/tex] is the probability of success on a single trial (rolling a 4), which is [tex]\(\frac{1}{6}\)[/tex].
- [tex]\( 1 - p \)[/tex] is the probability of failure on a single trial (not rolling a 4), which is [tex]\(\frac{5}{6}\)[/tex].
2. Identify the binomial coefficient [tex]\( { }_n C_k \)[/tex]:
[tex]\[ { }_n C_k = \frac{n!}{k!(n-k)!} \][/tex]
For this problem, [tex]\( { }_7 C_2 \)[/tex]:
[tex]\[ { }_7 C_2 = \frac{7!}{2!(7-2)!} = \frac{7!}{2! \cdot 5!} \][/tex]
3. Construct the binomial probability expression:
[tex]\[ P(k=2) = { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
4. Plug in the values and identify the correct choice:
[tex]\[ { }_7 C_2 \, \left(\frac{1}{6}\right)^2 \, \left(\frac{5}{6}\right)^5 \][/tex]
The correct expression representing the probability of rolling a 4 exactly 2 times in 7 rolls is:
[tex]\[ { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
1. Identify the components of the binomial probability formula:
[tex]\[ P(k \text{ successes}) = { }_n C_k \, p^k \, (1-p)^{n-k} \][/tex]
where:
- [tex]\( n \)[/tex] is the number of trials (7 rolls of the die).
- [tex]\( k \)[/tex] is the number of successes (rolling a 4 exactly 2 times).
- [tex]\( p \)[/tex] is the probability of success on a single trial (rolling a 4), which is [tex]\(\frac{1}{6}\)[/tex].
- [tex]\( 1 - p \)[/tex] is the probability of failure on a single trial (not rolling a 4), which is [tex]\(\frac{5}{6}\)[/tex].
2. Identify the binomial coefficient [tex]\( { }_n C_k \)[/tex]:
[tex]\[ { }_n C_k = \frac{n!}{k!(n-k)!} \][/tex]
For this problem, [tex]\( { }_7 C_2 \)[/tex]:
[tex]\[ { }_7 C_2 = \frac{7!}{2!(7-2)!} = \frac{7!}{2! \cdot 5!} \][/tex]
3. Construct the binomial probability expression:
[tex]\[ P(k=2) = { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
4. Plug in the values and identify the correct choice:
[tex]\[ { }_7 C_2 \, \left(\frac{1}{6}\right)^2 \, \left(\frac{5}{6}\right)^5 \][/tex]
The correct expression representing the probability of rolling a 4 exactly 2 times in 7 rolls is:
[tex]\[ { }_7 C_2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^5 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.