Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's solve this step-by-step:
1. Identify the given ratio: The ratio of toffee:coffee:orange:mint chocolates is given as [tex]\(5:4:2:3\)[/tex]. We will denote these values as follows:
- Toffee = 5 parts
- Coffee = 4 parts
- Orange = 2 parts
- Mint = 3 parts
2. Calculate the total ratio sum excluding hazelnut chocolates: The total number of parts without considering hazelnut chocolates is:
[tex]\[ 5 + 4 + 2 + 3 = 14 \text{ parts} \][/tex]
3. Include the hazelnut chocolates: According to the problem, we should include hazelnut chocolates which will be 1 additional part. Therefore, the total number of parts becomes:
[tex]\[ 14 + 1 = 15 \text{ total parts} \][/tex]
4. Determine the total number of chocolates in the box: We are told that the probability of picking a hazelnut chocolate is [tex]\(\frac{1}{8}\)[/tex]. This means that out of every 8 chocolates, 1 is hazelnut. Therefore, the number of total chocolates can be determined by multiplying the total parts by 8:
[tex]\[ 15 \times 8 = 120 \text{ chocolates} \][/tex]
5. Calculate the number of hazelnut chocolates: Given the probability of [tex]\(\frac{1}{8}\)[/tex] for hazelnut chocolates, we can now find the number of hazelnut chocolates by dividing the total number of chocolates by 8:
[tex]\[ \frac{120}{8} = 15 \text{ hazelnut chocolates} \][/tex]
So, there are [tex]\(15\)[/tex] hazelnut chocolates in the box.
1. Identify the given ratio: The ratio of toffee:coffee:orange:mint chocolates is given as [tex]\(5:4:2:3\)[/tex]. We will denote these values as follows:
- Toffee = 5 parts
- Coffee = 4 parts
- Orange = 2 parts
- Mint = 3 parts
2. Calculate the total ratio sum excluding hazelnut chocolates: The total number of parts without considering hazelnut chocolates is:
[tex]\[ 5 + 4 + 2 + 3 = 14 \text{ parts} \][/tex]
3. Include the hazelnut chocolates: According to the problem, we should include hazelnut chocolates which will be 1 additional part. Therefore, the total number of parts becomes:
[tex]\[ 14 + 1 = 15 \text{ total parts} \][/tex]
4. Determine the total number of chocolates in the box: We are told that the probability of picking a hazelnut chocolate is [tex]\(\frac{1}{8}\)[/tex]. This means that out of every 8 chocolates, 1 is hazelnut. Therefore, the number of total chocolates can be determined by multiplying the total parts by 8:
[tex]\[ 15 \times 8 = 120 \text{ chocolates} \][/tex]
5. Calculate the number of hazelnut chocolates: Given the probability of [tex]\(\frac{1}{8}\)[/tex] for hazelnut chocolates, we can now find the number of hazelnut chocolates by dividing the total number of chocolates by 8:
[tex]\[ \frac{120}{8} = 15 \text{ hazelnut chocolates} \][/tex]
So, there are [tex]\(15\)[/tex] hazelnut chocolates in the box.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.