Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Aron flips a penny 9 times. Which expression represents the probability of getting exactly 3 heads?

A. [tex]\({ }_9 C_3(0.5)^3(0.5)^6\)[/tex]

B. [tex]\({ }_9 C_3(0.5)^3\)[/tex]

C. [tex]\({ }_9 C_3(0.5)^3(0.5)^9\)[/tex]

D. [tex]\({ }_9 C_6(0.5)^6\)[/tex]


Sagot :

To determine the probability of getting exactly 3 heads when Aron flips a penny 9 times, we need to use the binomial probability formula:

[tex]\[ P(k \text{ successes}) = {^n}C_k \cdot p^k \cdot (1-p)^{n-k} \][/tex]

where:
- [tex]\( n \)[/tex] is the number of trials (flips).
- [tex]\( k \)[/tex] is the number of successes (heads).
- [tex]\( p \)[/tex] is the probability of success on a single trial.
- [tex]\( {^n}C_k \)[/tex] is the binomial coefficient, which represents the number of ways to choose [tex]\( k \)[/tex] successes in [tex]\( n \)[/tex] trials.

Given the values:
- [tex]\( n = 9 \)[/tex] (number of flips)
- [tex]\( k = 3 \)[/tex] (number of heads we want)
- [tex]\( p = 0.5 \)[/tex] (probability of getting heads in a single flip)

The binomial coefficient [tex]\( {^9}C_3 \)[/tex] can be calculated as:

[tex]\[ {^9}C_3 = \frac{9!}{3!(9-3)!} \][/tex]

Next, we can substitute [tex]\( n \)[/tex], [tex]\( k \)[/tex], and [tex]\( p \)[/tex] into the probability formula:

[tex]\[ P(3 \text{ heads}) = {^9}C_3 \cdot (0.5)^3 \cdot (1-0.5)^{9-3} \][/tex]

Simplifying [tex]\( (1-0.5) \)[/tex] gives [tex]\( 0.5 \)[/tex], thus:

[tex]\[ P(3 \text{ heads}) = {^9}C_3 \cdot (0.5)^3 \cdot (0.5)^6 \][/tex]
[tex]\[ = {^9}C_3 \cdot (0.5)^{3+6} \][/tex]
[tex]\[ = {^9}C_3 \cdot (0.5)^9 \][/tex]

Now, identifying the expression we used:

[tex]\[ {^9}C_3 \cdot (0.5)^3 \cdot (0.5)^6 \][/tex]

This matches the first option given:

[tex]\[ {^9}C_3(0.5)^3(0.5)^6 \][/tex]

Therefore, the correct expression that represents the probability of getting exactly 3 heads in 9 flips is:

[tex]\[ {^9}C_3(0.5)^3(0.5)^6 \][/tex]