At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the total number of elements in the universe (denoted as [tex]\( n(U) \)[/tex]), we are given the following information:
- [tex]\( n(A') = 25 \)[/tex]
- [tex]\( n(B) = 24 \)[/tex]
- [tex]\( n(A' \cup B') = 37 \)[/tex]
- [tex]\( n(A \cap B) = 10 \)[/tex]
First, let's recall a few set theory principles and relationships:
1. [tex]\( n(A') \)[/tex] is the number of elements not in set [tex]\( A \)[/tex].
2. [tex]\( n(A \cup B) \)[/tex] is the number of elements in either set [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or both.
3. [tex]\( n(A' \cup B') \)[/tex] is the number of elements in either [tex]\( A' \)[/tex] (not in [tex]\( A \)[/tex]) or [tex]\( B' \)[/tex] (not in [tex]\( B \)[/tex]) or both. It can be related to the elements that are in neither [tex]\( A \)[/tex] nor [tex]\( B \)[/tex].
To solve for [tex]\( n(U) \)[/tex], we proceed as follows:
1. Using the De Morgan's law, we know:
[tex]\[ n(A' \cup B') = n(U) - n(A \cap B) \][/tex]
Given [tex]\( n(A' \cup B') = 37 \)[/tex]:
[tex]\[ 37 = n(U) - n(A \cap B) \][/tex]
Hence:
[tex]\[ 37 = n(U) - 10 \][/tex]
Solving for [tex]\( n(U) \)[/tex]:
[tex]\[ n(U) = 37 + 10 \][/tex]
[tex]\[ n(U) = 47 \][/tex]
Therefore, the total number of elements in the universe is [tex]\( 47 \)[/tex].
- [tex]\( n(A') = 25 \)[/tex]
- [tex]\( n(B) = 24 \)[/tex]
- [tex]\( n(A' \cup B') = 37 \)[/tex]
- [tex]\( n(A \cap B) = 10 \)[/tex]
First, let's recall a few set theory principles and relationships:
1. [tex]\( n(A') \)[/tex] is the number of elements not in set [tex]\( A \)[/tex].
2. [tex]\( n(A \cup B) \)[/tex] is the number of elements in either set [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or both.
3. [tex]\( n(A' \cup B') \)[/tex] is the number of elements in either [tex]\( A' \)[/tex] (not in [tex]\( A \)[/tex]) or [tex]\( B' \)[/tex] (not in [tex]\( B \)[/tex]) or both. It can be related to the elements that are in neither [tex]\( A \)[/tex] nor [tex]\( B \)[/tex].
To solve for [tex]\( n(U) \)[/tex], we proceed as follows:
1. Using the De Morgan's law, we know:
[tex]\[ n(A' \cup B') = n(U) - n(A \cap B) \][/tex]
Given [tex]\( n(A' \cup B') = 37 \)[/tex]:
[tex]\[ 37 = n(U) - n(A \cap B) \][/tex]
Hence:
[tex]\[ 37 = n(U) - 10 \][/tex]
Solving for [tex]\( n(U) \)[/tex]:
[tex]\[ n(U) = 37 + 10 \][/tex]
[tex]\[ n(U) = 47 \][/tex]
Therefore, the total number of elements in the universe is [tex]\( 47 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.