Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Q6. The product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals:

a. [tex]\(\sqrt{2}\)[/tex]

b. [tex]\(2\)[/tex]

c. [tex]\(\sqrt[12]{2}\)[/tex]

d. [tex]\(\)[/tex]

Sagot :

To solve for the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex], let's break it down step by step.

1. Convert the radicals to exponents:
- [tex]\(\sqrt[3]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{3}}\)[/tex].
- [tex]\(\sqrt[4]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{4}}\)[/tex].
- [tex]\(\sqrt[12]{32}\)[/tex] is equivalent to [tex]\(32^{\frac{1}{12}}\)[/tex].

2. Simplify [tex]\(32^{\frac{1}{12}}\)[/tex] using the fact that [tex]\(32\)[/tex] can be written as [tex]\(2^5\)[/tex]:
- [tex]\(32 = 2^5\)[/tex].
- Therefore, [tex]\(32^{\frac{1}{12}} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}}\)[/tex].

3. Combine the exponents since the bases are the same:
- [tex]\(2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}}\)[/tex].

4. Add the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{4} + \frac{5}{12} \][/tex]

To add these fractions, find a common denominator. The common denominator for 3, 4, and 12 is 12.
- [tex]\(\frac{1}{3} = \frac{4}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{3}{12}\)[/tex]
- [tex]\(\frac{5}{12} = \frac{5}{12}\)[/tex]

Now, add these fractions together:
[tex]\[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \][/tex]

5. Combine into a single base:
- This means the combined exponent is 1, so [tex]\(2^1 = 2\)[/tex].

Therefore, the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals 2. The correct answer is:

b. 2