Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex], let's break it down step by step.
1. Convert the radicals to exponents:
- [tex]\(\sqrt[3]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{3}}\)[/tex].
- [tex]\(\sqrt[4]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{4}}\)[/tex].
- [tex]\(\sqrt[12]{32}\)[/tex] is equivalent to [tex]\(32^{\frac{1}{12}}\)[/tex].
2. Simplify [tex]\(32^{\frac{1}{12}}\)[/tex] using the fact that [tex]\(32\)[/tex] can be written as [tex]\(2^5\)[/tex]:
- [tex]\(32 = 2^5\)[/tex].
- Therefore, [tex]\(32^{\frac{1}{12}} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}}\)[/tex].
3. Combine the exponents since the bases are the same:
- [tex]\(2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}}\)[/tex].
4. Add the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{4} + \frac{5}{12} \][/tex]
To add these fractions, find a common denominator. The common denominator for 3, 4, and 12 is 12.
- [tex]\(\frac{1}{3} = \frac{4}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{3}{12}\)[/tex]
- [tex]\(\frac{5}{12} = \frac{5}{12}\)[/tex]
Now, add these fractions together:
[tex]\[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \][/tex]
5. Combine into a single base:
- This means the combined exponent is 1, so [tex]\(2^1 = 2\)[/tex].
Therefore, the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals 2. The correct answer is:
b. 2
1. Convert the radicals to exponents:
- [tex]\(\sqrt[3]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{3}}\)[/tex].
- [tex]\(\sqrt[4]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{4}}\)[/tex].
- [tex]\(\sqrt[12]{32}\)[/tex] is equivalent to [tex]\(32^{\frac{1}{12}}\)[/tex].
2. Simplify [tex]\(32^{\frac{1}{12}}\)[/tex] using the fact that [tex]\(32\)[/tex] can be written as [tex]\(2^5\)[/tex]:
- [tex]\(32 = 2^5\)[/tex].
- Therefore, [tex]\(32^{\frac{1}{12}} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}}\)[/tex].
3. Combine the exponents since the bases are the same:
- [tex]\(2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}}\)[/tex].
4. Add the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{4} + \frac{5}{12} \][/tex]
To add these fractions, find a common denominator. The common denominator for 3, 4, and 12 is 12.
- [tex]\(\frac{1}{3} = \frac{4}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{3}{12}\)[/tex]
- [tex]\(\frac{5}{12} = \frac{5}{12}\)[/tex]
Now, add these fractions together:
[tex]\[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \][/tex]
5. Combine into a single base:
- This means the combined exponent is 1, so [tex]\(2^1 = 2\)[/tex].
Therefore, the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals 2. The correct answer is:
b. 2
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.