Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex], let's break it down step by step.
1. Convert the radicals to exponents:
- [tex]\(\sqrt[3]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{3}}\)[/tex].
- [tex]\(\sqrt[4]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{4}}\)[/tex].
- [tex]\(\sqrt[12]{32}\)[/tex] is equivalent to [tex]\(32^{\frac{1}{12}}\)[/tex].
2. Simplify [tex]\(32^{\frac{1}{12}}\)[/tex] using the fact that [tex]\(32\)[/tex] can be written as [tex]\(2^5\)[/tex]:
- [tex]\(32 = 2^5\)[/tex].
- Therefore, [tex]\(32^{\frac{1}{12}} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}}\)[/tex].
3. Combine the exponents since the bases are the same:
- [tex]\(2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}}\)[/tex].
4. Add the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{4} + \frac{5}{12} \][/tex]
To add these fractions, find a common denominator. The common denominator for 3, 4, and 12 is 12.
- [tex]\(\frac{1}{3} = \frac{4}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{3}{12}\)[/tex]
- [tex]\(\frac{5}{12} = \frac{5}{12}\)[/tex]
Now, add these fractions together:
[tex]\[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \][/tex]
5. Combine into a single base:
- This means the combined exponent is 1, so [tex]\(2^1 = 2\)[/tex].
Therefore, the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals 2. The correct answer is:
b. 2
1. Convert the radicals to exponents:
- [tex]\(\sqrt[3]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{3}}\)[/tex].
- [tex]\(\sqrt[4]{2}\)[/tex] is equivalent to [tex]\(2^{\frac{1}{4}}\)[/tex].
- [tex]\(\sqrt[12]{32}\)[/tex] is equivalent to [tex]\(32^{\frac{1}{12}}\)[/tex].
2. Simplify [tex]\(32^{\frac{1}{12}}\)[/tex] using the fact that [tex]\(32\)[/tex] can be written as [tex]\(2^5\)[/tex]:
- [tex]\(32 = 2^5\)[/tex].
- Therefore, [tex]\(32^{\frac{1}{12}} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}}\)[/tex].
3. Combine the exponents since the bases are the same:
- [tex]\(2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}}\)[/tex].
4. Add the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{4} + \frac{5}{12} \][/tex]
To add these fractions, find a common denominator. The common denominator for 3, 4, and 12 is 12.
- [tex]\(\frac{1}{3} = \frac{4}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{3}{12}\)[/tex]
- [tex]\(\frac{5}{12} = \frac{5}{12}\)[/tex]
Now, add these fractions together:
[tex]\[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \][/tex]
5. Combine into a single base:
- This means the combined exponent is 1, so [tex]\(2^1 = 2\)[/tex].
Therefore, the product [tex]\(\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}\)[/tex] equals 2. The correct answer is:
b. 2
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.