Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given polynomial division [tex]\((3x^4 + 6x^3 + 2x^2 + 9x + 10) \div (x + 2)\)[/tex] using synthetic division, we follow these steps:
1. Identify the divisor:
The polynomial divisor is [tex]\(x + 2\)[/tex], which corresponds to a value of [tex]\(x = -2\)[/tex].
2. List the coefficients of the polynomial:
The coefficients of the polynomial [tex]\(3x^4 + 6x^3 + 2x^2 + 9x + 10\)[/tex] are:
[tex]\[ [3, 6, 2, 9, 10] \][/tex]
3. Set up the synthetic division table:
We start by writing down the coefficients in a row and place the zero of the divisor (which is -2) to the left.
4. Performing synthetic division:
- Bring down the first coefficient (3) as it is.
- Multiply the value brought down by -2 and write the product under the next coefficient.
- Add the product to the next coefficient and write the sum below it.
- Continue this process until all coefficients have been used.
Here's the detailed step-by-step process:
| Coefficients | 3 | 6 | 2 | 9 | 10 |
|----------------------|----|----|----|----|-----|
| | | -6 | -12| -26| -52 |
| Bring down the first | 3 | 0 | 2 | 5 | 0 |
- Bring down [tex]\(3\)[/tex].
- Multiply [tex]\(3\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-6\)[/tex]; add [tex]\(-6\)[/tex] to [tex]\(6\)[/tex] to get [tex]\(0\)[/tex].
- Multiply [tex]\(0\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(0\)[/tex]; add [tex]\(0\)[/tex] to [tex]\(2\)[/tex] to get [tex]\(2\)[/tex].
- Multiply [tex]\(2\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-4\)[/tex]; add [tex]\(-4\)[/tex] to [tex]\(9\)[/tex] to get [tex]\(5\)[/tex].
- Multiply [tex]\(5\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-10\)[/tex]; add [tex]\(-10\)[/tex] to [tex]\(10\)[/tex] to get [tex]\(0\)[/tex].
5. Result:
The row obtained from the above steps gives us the coefficients of the quotient and the remainder term:
- Quotient coefficients: [tex]\([3, 0, 2, 5]\)[/tex]
- Remainder: [tex]\(0\)[/tex]
Thus, the quotient polynomial is [tex]\(3x^3 + 0x^2 + 2x + 5\)[/tex], which simplifies to:
[tex]\[ \boxed{3x^3 + 2x + 5} \][/tex]
Hence, the correct representation of the quotient is [tex]\(3 x^3 + 2 x + 5\)[/tex].
1. Identify the divisor:
The polynomial divisor is [tex]\(x + 2\)[/tex], which corresponds to a value of [tex]\(x = -2\)[/tex].
2. List the coefficients of the polynomial:
The coefficients of the polynomial [tex]\(3x^4 + 6x^3 + 2x^2 + 9x + 10\)[/tex] are:
[tex]\[ [3, 6, 2, 9, 10] \][/tex]
3. Set up the synthetic division table:
We start by writing down the coefficients in a row and place the zero of the divisor (which is -2) to the left.
4. Performing synthetic division:
- Bring down the first coefficient (3) as it is.
- Multiply the value brought down by -2 and write the product under the next coefficient.
- Add the product to the next coefficient and write the sum below it.
- Continue this process until all coefficients have been used.
Here's the detailed step-by-step process:
| Coefficients | 3 | 6 | 2 | 9 | 10 |
|----------------------|----|----|----|----|-----|
| | | -6 | -12| -26| -52 |
| Bring down the first | 3 | 0 | 2 | 5 | 0 |
- Bring down [tex]\(3\)[/tex].
- Multiply [tex]\(3\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-6\)[/tex]; add [tex]\(-6\)[/tex] to [tex]\(6\)[/tex] to get [tex]\(0\)[/tex].
- Multiply [tex]\(0\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(0\)[/tex]; add [tex]\(0\)[/tex] to [tex]\(2\)[/tex] to get [tex]\(2\)[/tex].
- Multiply [tex]\(2\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-4\)[/tex]; add [tex]\(-4\)[/tex] to [tex]\(9\)[/tex] to get [tex]\(5\)[/tex].
- Multiply [tex]\(5\)[/tex] by [tex]\(-2\)[/tex] to get [tex]\(-10\)[/tex]; add [tex]\(-10\)[/tex] to [tex]\(10\)[/tex] to get [tex]\(0\)[/tex].
5. Result:
The row obtained from the above steps gives us the coefficients of the quotient and the remainder term:
- Quotient coefficients: [tex]\([3, 0, 2, 5]\)[/tex]
- Remainder: [tex]\(0\)[/tex]
Thus, the quotient polynomial is [tex]\(3x^3 + 0x^2 + 2x + 5\)[/tex], which simplifies to:
[tex]\[ \boxed{3x^3 + 2x + 5} \][/tex]
Hence, the correct representation of the quotient is [tex]\(3 x^3 + 2 x + 5\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.