Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Using a truth table, prove the following logical equivalence:

[tex]\[ (p \land q) = \sim(p \rightarrow \sim q) \][/tex]

Sagot :

Sure, let's prove the logical equivalence [tex]\(( p \wedge q ) = \sim ( p \rightarrow \sim q )\)[/tex] using a truth table.

To do this, we will construct a truth table that includes columns for [tex]\(p\)[/tex], [tex]\(q\)[/tex], [tex]\(p \wedge q\)[/tex], [tex]\(\sim q\)[/tex], [tex]\(p \rightarrow \sim q\)[/tex], and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex].

Here's the detailed step-by-step solution:

1. List the possible truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
There are four combinations of truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
- [tex]\(p = \text{False}, q = \text{False}\)[/tex]
- [tex]\(p = \text{False}, q = \text{True}\)[/tex]
- [tex]\(p = \text{True}, q = \text{False}\)[/tex]
- [tex]\(p = \text{True}, q = \text{True}\)[/tex]

2. Calculate [tex]\(p \wedge q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & p \wedge q \\ \hline \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]

3. Calculate [tex]\(\sim q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & \sim q \\ \hline \text{False} & \text{False} & \text{True} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} \\ \text{True} & \text{True} & \text{False} \\ \hline \end{array} \][/tex]

4. Calculate [tex]\(p \rightarrow \sim q\)[/tex]:
Recall that [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\neg p \lor \sim q\)[/tex].
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & \sim q & p \rightarrow \sim q \\ \hline \text{False} & \text{False} & \text{True} & \text{True} \\ \text{False} & \text{True} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{True} & \text{True} \\ \text{True} & \text{True} & \text{False} & \text{False} \\ \hline \end{array} \][/tex]

5. Calculate [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \rightarrow \sim q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{True} & \text{False} \\ \text{False} & \text{True} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} & \text{False} \\ \text{True} & \text{True} & \text{False} & \text{True} \\ \hline \end{array} \][/tex]

6. Compare [tex]\(p \wedge q\)[/tex] with [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \wedge q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} & \text{False} \\ \text{True} & \text{False} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]

From the table, we can see that the truth values for [tex]\(p \wedge q\)[/tex] and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex] are always identical for all possible combinations of [tex]\(p\)[/tex] and [tex]\(q\)[/tex]. Hence, it is proven through the truth table that:

[tex]\[ ( p \wedge q ) = \sim ( p \rightarrow \sim q ) \][/tex]
This completes the proof of the logical equivalence.