Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's prove the logical equivalence [tex]\(( p \wedge q ) = \sim ( p \rightarrow \sim q )\)[/tex] using a truth table.
To do this, we will construct a truth table that includes columns for [tex]\(p\)[/tex], [tex]\(q\)[/tex], [tex]\(p \wedge q\)[/tex], [tex]\(\sim q\)[/tex], [tex]\(p \rightarrow \sim q\)[/tex], and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex].
Here's the detailed step-by-step solution:
1. List the possible truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
There are four combinations of truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
- [tex]\(p = \text{False}, q = \text{False}\)[/tex]
- [tex]\(p = \text{False}, q = \text{True}\)[/tex]
- [tex]\(p = \text{True}, q = \text{False}\)[/tex]
- [tex]\(p = \text{True}, q = \text{True}\)[/tex]
2. Calculate [tex]\(p \wedge q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & p \wedge q \\ \hline \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]
3. Calculate [tex]\(\sim q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & \sim q \\ \hline \text{False} & \text{False} & \text{True} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} \\ \text{True} & \text{True} & \text{False} \\ \hline \end{array} \][/tex]
4. Calculate [tex]\(p \rightarrow \sim q\)[/tex]:
Recall that [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\neg p \lor \sim q\)[/tex].
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & \sim q & p \rightarrow \sim q \\ \hline \text{False} & \text{False} & \text{True} & \text{True} \\ \text{False} & \text{True} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{True} & \text{True} \\ \text{True} & \text{True} & \text{False} & \text{False} \\ \hline \end{array} \][/tex]
5. Calculate [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \rightarrow \sim q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{True} & \text{False} \\ \text{False} & \text{True} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} & \text{False} \\ \text{True} & \text{True} & \text{False} & \text{True} \\ \hline \end{array} \][/tex]
6. Compare [tex]\(p \wedge q\)[/tex] with [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \wedge q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} & \text{False} \\ \text{True} & \text{False} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]
From the table, we can see that the truth values for [tex]\(p \wedge q\)[/tex] and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex] are always identical for all possible combinations of [tex]\(p\)[/tex] and [tex]\(q\)[/tex]. Hence, it is proven through the truth table that:
[tex]\[ ( p \wedge q ) = \sim ( p \rightarrow \sim q ) \][/tex]
This completes the proof of the logical equivalence.
To do this, we will construct a truth table that includes columns for [tex]\(p\)[/tex], [tex]\(q\)[/tex], [tex]\(p \wedge q\)[/tex], [tex]\(\sim q\)[/tex], [tex]\(p \rightarrow \sim q\)[/tex], and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex].
Here's the detailed step-by-step solution:
1. List the possible truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
There are four combinations of truth values for [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
- [tex]\(p = \text{False}, q = \text{False}\)[/tex]
- [tex]\(p = \text{False}, q = \text{True}\)[/tex]
- [tex]\(p = \text{True}, q = \text{False}\)[/tex]
- [tex]\(p = \text{True}, q = \text{True}\)[/tex]
2. Calculate [tex]\(p \wedge q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & p \wedge q \\ \hline \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]
3. Calculate [tex]\(\sim q\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|} \hline p & q & \sim q \\ \hline \text{False} & \text{False} & \text{True} \\ \text{False} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} \\ \text{True} & \text{True} & \text{False} \\ \hline \end{array} \][/tex]
4. Calculate [tex]\(p \rightarrow \sim q\)[/tex]:
Recall that [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\neg p \lor \sim q\)[/tex].
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & \sim q & p \rightarrow \sim q \\ \hline \text{False} & \text{False} & \text{True} & \text{True} \\ \text{False} & \text{True} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{True} & \text{True} \\ \text{True} & \text{True} & \text{False} & \text{False} \\ \hline \end{array} \][/tex]
5. Calculate [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \rightarrow \sim q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{True} & \text{False} \\ \text{False} & \text{True} & \text{True} & \text{False} \\ \text{True} & \text{False} & \text{True} & \text{False} \\ \text{True} & \text{True} & \text{False} & \text{True} \\ \hline \end{array} \][/tex]
6. Compare [tex]\(p \wedge q\)[/tex] with [tex]\(\sim ( p \rightarrow \sim q )\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline p & q & p \wedge q & \sim ( p \rightarrow \sim q ) \\ \hline \text{False} & \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} & \text{False} \\ \text{True} & \text{False} & \text{False} & \text{False} \\ \text{True} & \text{True} & \text{True} & \text{True} \\ \hline \end{array} \][/tex]
From the table, we can see that the truth values for [tex]\(p \wedge q\)[/tex] and [tex]\(\sim ( p \rightarrow \sim q )\)[/tex] are always identical for all possible combinations of [tex]\(p\)[/tex] and [tex]\(q\)[/tex]. Hence, it is proven through the truth table that:
[tex]\[ ( p \wedge q ) = \sim ( p \rightarrow \sim q ) \][/tex]
This completes the proof of the logical equivalence.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.