Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3, given the relationship that [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], we can follow these steps:
1. Understand the inverse variation: When [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], it means [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k \)[/tex] is a constant. This relationship means that the product of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is always the same constant value [tex]\( k \)[/tex].
2. Determine the constant [tex]\( k \)[/tex]: We are given that [tex]\( y = 3 \)[/tex] when [tex]\( x = 11 \)[/tex]. Using the inverse variation formula, we can set up the equation:
[tex]\[ 3 = \frac{k}{11} \][/tex]
We solve for [tex]\( k \)[/tex] by multiplying both sides of the equation by 11:
[tex]\[ k = 3 \times 11 = 33 \][/tex]
So, the constant [tex]\( k \)[/tex] is 33.
3. Find the new value of [tex]\( y \)[/tex]: Now we need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3. Using the inverse variation formula again with the calculated constant [tex]\( k \)[/tex]:
[tex]\[ y = \frac{33}{3} \][/tex]
Dividing 33 by 3, we get:
[tex]\[ y = 11 \][/tex]
Therefore, when [tex]\( x \)[/tex] is 3, the value of [tex]\( y \)[/tex] is [tex]\( 11 \)[/tex].
1. Understand the inverse variation: When [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], it means [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k \)[/tex] is a constant. This relationship means that the product of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is always the same constant value [tex]\( k \)[/tex].
2. Determine the constant [tex]\( k \)[/tex]: We are given that [tex]\( y = 3 \)[/tex] when [tex]\( x = 11 \)[/tex]. Using the inverse variation formula, we can set up the equation:
[tex]\[ 3 = \frac{k}{11} \][/tex]
We solve for [tex]\( k \)[/tex] by multiplying both sides of the equation by 11:
[tex]\[ k = 3 \times 11 = 33 \][/tex]
So, the constant [tex]\( k \)[/tex] is 33.
3. Find the new value of [tex]\( y \)[/tex]: Now we need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3. Using the inverse variation formula again with the calculated constant [tex]\( k \)[/tex]:
[tex]\[ y = \frac{33}{3} \][/tex]
Dividing 33 by 3, we get:
[tex]\[ y = 11 \][/tex]
Therefore, when [tex]\( x \)[/tex] is 3, the value of [tex]\( y \)[/tex] is [tex]\( 11 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.