Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3, given the relationship that [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], we can follow these steps:
1. Understand the inverse variation: When [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], it means [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k \)[/tex] is a constant. This relationship means that the product of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is always the same constant value [tex]\( k \)[/tex].
2. Determine the constant [tex]\( k \)[/tex]: We are given that [tex]\( y = 3 \)[/tex] when [tex]\( x = 11 \)[/tex]. Using the inverse variation formula, we can set up the equation:
[tex]\[ 3 = \frac{k}{11} \][/tex]
We solve for [tex]\( k \)[/tex] by multiplying both sides of the equation by 11:
[tex]\[ k = 3 \times 11 = 33 \][/tex]
So, the constant [tex]\( k \)[/tex] is 33.
3. Find the new value of [tex]\( y \)[/tex]: Now we need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3. Using the inverse variation formula again with the calculated constant [tex]\( k \)[/tex]:
[tex]\[ y = \frac{33}{3} \][/tex]
Dividing 33 by 3, we get:
[tex]\[ y = 11 \][/tex]
Therefore, when [tex]\( x \)[/tex] is 3, the value of [tex]\( y \)[/tex] is [tex]\( 11 \)[/tex].
1. Understand the inverse variation: When [tex]\( y \)[/tex] varies inversely with [tex]\( x \)[/tex], it means [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k \)[/tex] is a constant. This relationship means that the product of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is always the same constant value [tex]\( k \)[/tex].
2. Determine the constant [tex]\( k \)[/tex]: We are given that [tex]\( y = 3 \)[/tex] when [tex]\( x = 11 \)[/tex]. Using the inverse variation formula, we can set up the equation:
[tex]\[ 3 = \frac{k}{11} \][/tex]
We solve for [tex]\( k \)[/tex] by multiplying both sides of the equation by 11:
[tex]\[ k = 3 \times 11 = 33 \][/tex]
So, the constant [tex]\( k \)[/tex] is 33.
3. Find the new value of [tex]\( y \)[/tex]: Now we need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 3. Using the inverse variation formula again with the calculated constant [tex]\( k \)[/tex]:
[tex]\[ y = \frac{33}{3} \][/tex]
Dividing 33 by 3, we get:
[tex]\[ y = 11 \][/tex]
Therefore, when [tex]\( x \)[/tex] is 3, the value of [tex]\( y \)[/tex] is [tex]\( 11 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.