Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the radius of a hemisphere with a volume of [tex]\(80 \, \text{cm}^3\)[/tex], we need to follow a series of steps involving the formula for the volume of a sphere. Here is the detailed, step-by-step solution:
1. Volume Relationship Between Hemisphere and Sphere:
The volume [tex]\(V_{\text{hemisphere}}\)[/tex] of a hemisphere is half of the volume [tex]\(V_{\text{sphere}}\)[/tex] of a full sphere. Given the volume of the hemisphere is [tex]\(80 \, \text{cm}^3\)[/tex]:
[tex]\[ V_{\text{sphere}} = 2 \times V_{\text{hemisphere}} \][/tex]
Substituting the given volume:
[tex]\[ V_{\text{sphere}} = 2 \times 80 \, \text{cm}^3 = 160 \, \text{cm}^3 \][/tex]
2. Formula for the Volume of a Sphere:
The volume of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\(r\)[/tex] is the radius of the sphere. Given the volume [tex]\(V_{\text{sphere}} = 160 \, \text{cm}^3\)[/tex], we can set up the equation:
[tex]\[ 160 = \frac{4}{3} \pi r^3 \][/tex]
3. Solving for the Radius:
We need to solve for [tex]\(r\)[/tex]. Start by isolating [tex]\(r^3\)[/tex]. Multiply both sides of the equation by [tex]\(\frac{3}{4 \pi}\)[/tex]:
[tex]\[ r^3 = 160 \times \frac{3}{4 \pi} = \frac{480}{4 \pi} = \frac{120}{\pi} \][/tex]
4. Cube Root to Find the Radius:
To find [tex]\(r\)[/tex], we need to take the cube root of [tex]\(\frac{120}{\pi}\)[/tex]:
[tex]\[ r = \sqrt[3]{\frac{120}{\pi}} \][/tex]
5. Simplification and Numerical Solution:
Evaluating the above expression numerically, we find:
[tex]\[ r \approx 3.367 \, \text{cm} \][/tex]
So, the radius of the hemisphere is approximately [tex]\(3.367 \, \text{cm}\)[/tex].
1. Volume Relationship Between Hemisphere and Sphere:
The volume [tex]\(V_{\text{hemisphere}}\)[/tex] of a hemisphere is half of the volume [tex]\(V_{\text{sphere}}\)[/tex] of a full sphere. Given the volume of the hemisphere is [tex]\(80 \, \text{cm}^3\)[/tex]:
[tex]\[ V_{\text{sphere}} = 2 \times V_{\text{hemisphere}} \][/tex]
Substituting the given volume:
[tex]\[ V_{\text{sphere}} = 2 \times 80 \, \text{cm}^3 = 160 \, \text{cm}^3 \][/tex]
2. Formula for the Volume of a Sphere:
The volume of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\(r\)[/tex] is the radius of the sphere. Given the volume [tex]\(V_{\text{sphere}} = 160 \, \text{cm}^3\)[/tex], we can set up the equation:
[tex]\[ 160 = \frac{4}{3} \pi r^3 \][/tex]
3. Solving for the Radius:
We need to solve for [tex]\(r\)[/tex]. Start by isolating [tex]\(r^3\)[/tex]. Multiply both sides of the equation by [tex]\(\frac{3}{4 \pi}\)[/tex]:
[tex]\[ r^3 = 160 \times \frac{3}{4 \pi} = \frac{480}{4 \pi} = \frac{120}{\pi} \][/tex]
4. Cube Root to Find the Radius:
To find [tex]\(r\)[/tex], we need to take the cube root of [tex]\(\frac{120}{\pi}\)[/tex]:
[tex]\[ r = \sqrt[3]{\frac{120}{\pi}} \][/tex]
5. Simplification and Numerical Solution:
Evaluating the above expression numerically, we find:
[tex]\[ r \approx 3.367 \, \text{cm} \][/tex]
So, the radius of the hemisphere is approximately [tex]\(3.367 \, \text{cm}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.