Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Simplify the following expression:
[tex]\[
\frac{5x-1}{x+3} + \frac{9}{x(x+3)}
\][/tex]

[tex]\[
\frac{[?] x^2 + x + }{x^2 + x}
\][/tex]


Sagot :

To simplify the expression
[tex]\[ \frac{5x - 1}{x + 3} + \frac{9}{x(x + 3)}, \][/tex]
we first find a common denominator for the fractions. The common denominator is [tex]\(x(x + 3)\)[/tex].

We begin by rewriting each fraction with this common denominator:

1. The first fraction [tex]\(\frac{5x - 1}{x + 3}\)[/tex]:

To convert [tex]\(\frac{5x - 1}{x + 3}\)[/tex] to have the common denominator [tex]\(x(x + 3)\)[/tex], we multiply both the numerator and the denominator by [tex]\(x\)[/tex]:
[tex]\[ \frac{5x - 1}{x + 3} = \frac{x(5x - 1)}{x(x + 3)} = \frac{5x^2 - x}{x(x + 3)}. \][/tex]

2. The second fraction [tex]\(\frac{9}{x(x + 3)}\)[/tex] already has the common denominator:
[tex]\[ \frac{9}{x(x + 3)}. \][/tex]

Now, we add the fractions:
[tex]\[ \frac{5x^2 - x}{x(x + 3)} + \frac{9}{x(x + 3)} = \frac{5x^2 - x + 9}{x(x + 3)}. \][/tex]

Thus, the combined fraction is:
[tex]\[ \frac{5x^2 - x + 9}{x(x + 3)}. \][/tex]

So, the simplified form of the given expression is:
[tex]\[ \frac{5x^2 - x + 9}{x(x + 3)}. \][/tex]

Finally, according to your question's format, this means our combined fraction has:
Numerator: [tex]\( 5x^2 - x + 9 \)[/tex]

Denominator: [tex]\( x(x + 3) \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.