Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's go through the steps to graph the quadratic function [tex]\( f(x) = (x + 1)(x - 5) \)[/tex]:
1. Identify the [tex]\(x\)[/tex]-intercepts:
To find the [tex]\(x\)[/tex]-intercepts, we set [tex]\(f(x) = 0\)[/tex]. This gives us:
[tex]\[ (x + 1)(x - 5) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Thus, [tex]\( x = -1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Hence, the [tex]\(x\)[/tex]-intercepts are [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex].
2. Find the midpoint between the intercepts:
The [tex]\(x\)[/tex]-coordinate of the midpoint between [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex] is found by taking the average of the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \text{Midpoint}_x = \frac{-1 + 5}{2} = \frac{4}{2} = 2 \][/tex]
Therefore, the midpoint on the x-axis is [tex]\((2, 0)\)[/tex].
3. Find the vertex:
For the quadratic function in factored form, the vertex [tex]\(x\)[/tex]-coordinate is the same as the midpoint's [tex]\(x\)[/tex]-coordinate. So the [tex]\(x\)[/tex]-coordinate of the vertex is [tex]\(2\)[/tex].
To find the [tex]\(y\)[/tex]-coordinate of the vertex, substitute [tex]\(x = 2\)[/tex] back into the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(2) = (2 + 1)(2 - 5) = 3 \times (-3) = -9 \][/tex]
Therefore, the vertex of the function is [tex]\((2, -9)\)[/tex].
4. Find the [tex]\(y\)[/tex]-intercept:
The [tex]\(y\)[/tex]-intercept is found by setting [tex]\(x = 0\)[/tex] in the function:
[tex]\[ f(0) = (0 + 1)(0 - 5) = 1 \times (-5) = -5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -5)\)[/tex].
5. Plot another point, then draw the graph:
To ensure the accuracy of the graph, we can calculate another point. Let's use [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 + 1)(1 - 5) = 2 \times (-4) = -8 \][/tex]
So, another point on the graph is [tex]\((1, -8)\)[/tex].
Based on these calculations, our results are:
- [tex]\(x\)[/tex]-intercepts: [tex]\((-1, 0)\)[/tex], [tex]\((5, 0)\)[/tex]
- Midpoint: [tex]\((2, 0)\)[/tex]
- Vertex: [tex]\((2, -9)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, -5)\)[/tex]
- Another point: [tex]\((1, -8)\)[/tex]
Using these points, you can now plot the quadratic function [tex]\(f(x) = (x + 1)(x - 5)\)[/tex] accurately on a graph.
1. Identify the [tex]\(x\)[/tex]-intercepts:
To find the [tex]\(x\)[/tex]-intercepts, we set [tex]\(f(x) = 0\)[/tex]. This gives us:
[tex]\[ (x + 1)(x - 5) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Thus, [tex]\( x = -1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Hence, the [tex]\(x\)[/tex]-intercepts are [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex].
2. Find the midpoint between the intercepts:
The [tex]\(x\)[/tex]-coordinate of the midpoint between [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex] is found by taking the average of the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \text{Midpoint}_x = \frac{-1 + 5}{2} = \frac{4}{2} = 2 \][/tex]
Therefore, the midpoint on the x-axis is [tex]\((2, 0)\)[/tex].
3. Find the vertex:
For the quadratic function in factored form, the vertex [tex]\(x\)[/tex]-coordinate is the same as the midpoint's [tex]\(x\)[/tex]-coordinate. So the [tex]\(x\)[/tex]-coordinate of the vertex is [tex]\(2\)[/tex].
To find the [tex]\(y\)[/tex]-coordinate of the vertex, substitute [tex]\(x = 2\)[/tex] back into the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(2) = (2 + 1)(2 - 5) = 3 \times (-3) = -9 \][/tex]
Therefore, the vertex of the function is [tex]\((2, -9)\)[/tex].
4. Find the [tex]\(y\)[/tex]-intercept:
The [tex]\(y\)[/tex]-intercept is found by setting [tex]\(x = 0\)[/tex] in the function:
[tex]\[ f(0) = (0 + 1)(0 - 5) = 1 \times (-5) = -5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -5)\)[/tex].
5. Plot another point, then draw the graph:
To ensure the accuracy of the graph, we can calculate another point. Let's use [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 + 1)(1 - 5) = 2 \times (-4) = -8 \][/tex]
So, another point on the graph is [tex]\((1, -8)\)[/tex].
Based on these calculations, our results are:
- [tex]\(x\)[/tex]-intercepts: [tex]\((-1, 0)\)[/tex], [tex]\((5, 0)\)[/tex]
- Midpoint: [tex]\((2, 0)\)[/tex]
- Vertex: [tex]\((2, -9)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, -5)\)[/tex]
- Another point: [tex]\((1, -8)\)[/tex]
Using these points, you can now plot the quadratic function [tex]\(f(x) = (x + 1)(x - 5)\)[/tex] accurately on a graph.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.