Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's go through the steps to graph the quadratic function [tex]\( f(x) = (x + 1)(x - 5) \)[/tex]:
1. Identify the [tex]\(x\)[/tex]-intercepts:
To find the [tex]\(x\)[/tex]-intercepts, we set [tex]\(f(x) = 0\)[/tex]. This gives us:
[tex]\[ (x + 1)(x - 5) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Thus, [tex]\( x = -1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Hence, the [tex]\(x\)[/tex]-intercepts are [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex].
2. Find the midpoint between the intercepts:
The [tex]\(x\)[/tex]-coordinate of the midpoint between [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex] is found by taking the average of the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \text{Midpoint}_x = \frac{-1 + 5}{2} = \frac{4}{2} = 2 \][/tex]
Therefore, the midpoint on the x-axis is [tex]\((2, 0)\)[/tex].
3. Find the vertex:
For the quadratic function in factored form, the vertex [tex]\(x\)[/tex]-coordinate is the same as the midpoint's [tex]\(x\)[/tex]-coordinate. So the [tex]\(x\)[/tex]-coordinate of the vertex is [tex]\(2\)[/tex].
To find the [tex]\(y\)[/tex]-coordinate of the vertex, substitute [tex]\(x = 2\)[/tex] back into the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(2) = (2 + 1)(2 - 5) = 3 \times (-3) = -9 \][/tex]
Therefore, the vertex of the function is [tex]\((2, -9)\)[/tex].
4. Find the [tex]\(y\)[/tex]-intercept:
The [tex]\(y\)[/tex]-intercept is found by setting [tex]\(x = 0\)[/tex] in the function:
[tex]\[ f(0) = (0 + 1)(0 - 5) = 1 \times (-5) = -5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -5)\)[/tex].
5. Plot another point, then draw the graph:
To ensure the accuracy of the graph, we can calculate another point. Let's use [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 + 1)(1 - 5) = 2 \times (-4) = -8 \][/tex]
So, another point on the graph is [tex]\((1, -8)\)[/tex].
Based on these calculations, our results are:
- [tex]\(x\)[/tex]-intercepts: [tex]\((-1, 0)\)[/tex], [tex]\((5, 0)\)[/tex]
- Midpoint: [tex]\((2, 0)\)[/tex]
- Vertex: [tex]\((2, -9)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, -5)\)[/tex]
- Another point: [tex]\((1, -8)\)[/tex]
Using these points, you can now plot the quadratic function [tex]\(f(x) = (x + 1)(x - 5)\)[/tex] accurately on a graph.
1. Identify the [tex]\(x\)[/tex]-intercepts:
To find the [tex]\(x\)[/tex]-intercepts, we set [tex]\(f(x) = 0\)[/tex]. This gives us:
[tex]\[ (x + 1)(x - 5) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Thus, [tex]\( x = -1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Hence, the [tex]\(x\)[/tex]-intercepts are [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex].
2. Find the midpoint between the intercepts:
The [tex]\(x\)[/tex]-coordinate of the midpoint between [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex] is found by taking the average of the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \text{Midpoint}_x = \frac{-1 + 5}{2} = \frac{4}{2} = 2 \][/tex]
Therefore, the midpoint on the x-axis is [tex]\((2, 0)\)[/tex].
3. Find the vertex:
For the quadratic function in factored form, the vertex [tex]\(x\)[/tex]-coordinate is the same as the midpoint's [tex]\(x\)[/tex]-coordinate. So the [tex]\(x\)[/tex]-coordinate of the vertex is [tex]\(2\)[/tex].
To find the [tex]\(y\)[/tex]-coordinate of the vertex, substitute [tex]\(x = 2\)[/tex] back into the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(2) = (2 + 1)(2 - 5) = 3 \times (-3) = -9 \][/tex]
Therefore, the vertex of the function is [tex]\((2, -9)\)[/tex].
4. Find the [tex]\(y\)[/tex]-intercept:
The [tex]\(y\)[/tex]-intercept is found by setting [tex]\(x = 0\)[/tex] in the function:
[tex]\[ f(0) = (0 + 1)(0 - 5) = 1 \times (-5) = -5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -5)\)[/tex].
5. Plot another point, then draw the graph:
To ensure the accuracy of the graph, we can calculate another point. Let's use [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 + 1)(1 - 5) = 2 \times (-4) = -8 \][/tex]
So, another point on the graph is [tex]\((1, -8)\)[/tex].
Based on these calculations, our results are:
- [tex]\(x\)[/tex]-intercepts: [tex]\((-1, 0)\)[/tex], [tex]\((5, 0)\)[/tex]
- Midpoint: [tex]\((2, 0)\)[/tex]
- Vertex: [tex]\((2, -9)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, -5)\)[/tex]
- Another point: [tex]\((1, -8)\)[/tex]
Using these points, you can now plot the quadratic function [tex]\(f(x) = (x + 1)(x - 5)\)[/tex] accurately on a graph.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.