Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given functions has a vertex at [tex]\((2, -9)\)[/tex], we'll analyze the vertex form of each function. The vertex form of a quadratic function is given by:
[tex]\[ f(x) = a(x-h)^2 + k \][/tex]
Where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Let's analyze each function individually:
1. Function: [tex]\( f(x) = -(x - 3)^2 \)[/tex]
- This is already in vertex form.
- Here, [tex]\(a = -1\)[/tex], [tex]\(h = 3\)[/tex], [tex]\(k = 0\)[/tex].
- The vertex of this function is [tex]\((3, 0)\)[/tex].
2. Function: [tex]\( f(x) = (x + 8)^2 \)[/tex]
- This is already in vertex form.
- Here, [tex]\(a = 1\)[/tex], [tex]\(h = -8\)[/tex], [tex]\(k = 0\)[/tex].
- The vertex of this function is [tex]\((-8, 0)\)[/tex].
3. Function: [tex]\( f(x) = (x - 5)(x + 1) \)[/tex]
- First, we need to expand this to find the standard form [tex]\(ax^2 + bx + c\)[/tex]:
[tex]\[ f(x) = x^2 + x - 5x - 5 = x^2 - 4x - 5 \][/tex]
- To find the vertex of this quadratic function, we use the formula for the vertex of a parabola given by a quadratic equation [tex]\(ax^2 + bx + c\)[/tex]:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex] and [tex]\(b = -4\)[/tex]:
[tex]\[ x = -\frac{-4}{2 \times 1} = \frac{4}{2} = 2 \][/tex]
- Substitute [tex]\(x = 2\)[/tex] back into the function to find the corresponding [tex]\(y\)[/tex]-coordinate:
[tex]\[ f(2) = (2 - 5)(2 + 1) = (-3)(3) = -9 \][/tex]
- The vertex of this function is [tex]\((2, -9)\)[/tex].
4. Function: [tex]\( f(x) = -(x - 1)(x - 5) \)[/tex]
- First, expand this to find the standard form:
[tex]\[ f(x) = -(x^2 - 6x + 5) = -x^2 + 6x - 5 \][/tex]
- To find the vertex of this quadratic function, we use the vertex formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\(a = -1\)[/tex] and [tex]\(b = 6\)[/tex]:
[tex]\[ x = -\frac{6}{2 \times (-1)} = -\frac{6}{-2} = 3 \][/tex]
- Substitute [tex]\(x = 3\)[/tex] back into the function to find the corresponding [tex]\(y\)[/tex]-coordinate:
[tex]\[ f(3) = -(3 - 1)(3 - 5) = -(2)(-2) = 4 \][/tex]
- The vertex of this function is [tex]\((3, 4)\)[/tex].
After analyzing all the functions, the function [tex]\( f(x) = (x - 5)(x + 1) \)[/tex] has the vertex at [tex]\((2, -9)\)[/tex]. Therefore, the correct function is:
[tex]\[ \boxed{f(x) = (x - 5)(x + 1)} \][/tex]
[tex]\[ f(x) = a(x-h)^2 + k \][/tex]
Where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Let's analyze each function individually:
1. Function: [tex]\( f(x) = -(x - 3)^2 \)[/tex]
- This is already in vertex form.
- Here, [tex]\(a = -1\)[/tex], [tex]\(h = 3\)[/tex], [tex]\(k = 0\)[/tex].
- The vertex of this function is [tex]\((3, 0)\)[/tex].
2. Function: [tex]\( f(x) = (x + 8)^2 \)[/tex]
- This is already in vertex form.
- Here, [tex]\(a = 1\)[/tex], [tex]\(h = -8\)[/tex], [tex]\(k = 0\)[/tex].
- The vertex of this function is [tex]\((-8, 0)\)[/tex].
3. Function: [tex]\( f(x) = (x - 5)(x + 1) \)[/tex]
- First, we need to expand this to find the standard form [tex]\(ax^2 + bx + c\)[/tex]:
[tex]\[ f(x) = x^2 + x - 5x - 5 = x^2 - 4x - 5 \][/tex]
- To find the vertex of this quadratic function, we use the formula for the vertex of a parabola given by a quadratic equation [tex]\(ax^2 + bx + c\)[/tex]:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex] and [tex]\(b = -4\)[/tex]:
[tex]\[ x = -\frac{-4}{2 \times 1} = \frac{4}{2} = 2 \][/tex]
- Substitute [tex]\(x = 2\)[/tex] back into the function to find the corresponding [tex]\(y\)[/tex]-coordinate:
[tex]\[ f(2) = (2 - 5)(2 + 1) = (-3)(3) = -9 \][/tex]
- The vertex of this function is [tex]\((2, -9)\)[/tex].
4. Function: [tex]\( f(x) = -(x - 1)(x - 5) \)[/tex]
- First, expand this to find the standard form:
[tex]\[ f(x) = -(x^2 - 6x + 5) = -x^2 + 6x - 5 \][/tex]
- To find the vertex of this quadratic function, we use the vertex formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\(a = -1\)[/tex] and [tex]\(b = 6\)[/tex]:
[tex]\[ x = -\frac{6}{2 \times (-1)} = -\frac{6}{-2} = 3 \][/tex]
- Substitute [tex]\(x = 3\)[/tex] back into the function to find the corresponding [tex]\(y\)[/tex]-coordinate:
[tex]\[ f(3) = -(3 - 1)(3 - 5) = -(2)(-2) = 4 \][/tex]
- The vertex of this function is [tex]\((3, 4)\)[/tex].
After analyzing all the functions, the function [tex]\( f(x) = (x - 5)(x + 1) \)[/tex] has the vertex at [tex]\((2, -9)\)[/tex]. Therefore, the correct function is:
[tex]\[ \boxed{f(x) = (x - 5)(x + 1)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.