Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine if the given functions have critical points, we need to find the partial derivatives with respect to [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and then set these partial derivatives equal to zero.
1) [tex]\( f(x, y) = 2 - x^2 - y^2 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -2x \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = -2y \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -2x = 0 \Rightarrow x = 0 \)[/tex]
- [tex]\( -2y = 0 \Rightarrow y = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
2) [tex]\( f(x, y) = 1 - \sqrt[3]{x^2 y^2} \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = \frac{-2y^2}{3 (x^2 y^2)^{2/3}} = -\frac{2y^2}{3(x^2 y^2)^{2/3}} \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{-2x^2}{3 (x^2 y^2)^{2/3}} = -\frac{2x^2}{3(x^2 y^2)^{2/3}} \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{2y^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow y = 0 \)[/tex]
- [tex]\( -\frac{2x^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow x = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
3) [tex]\( f(x, y) = x^4 + y^4 - 4xy + 1 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 4x^3 - 4y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 4y^3 - 4x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 4x^3 - 4y = 0 \Rightarrow x^3 = y \)[/tex]
- [tex]\( 4y^3 - 4x = 0 \Rightarrow y^3 = x \)[/tex]
Solving these equations:
- [tex]\( x^3 = (x^3)^{1/3} = x \Rightarrow x = y \)[/tex]
The critical points are where [tex]\(x\)[/tex] and [tex]\(y\)[/tex] satisfy this condition. For example, [tex]\((0, 0)\)[/tex], [tex]\((1, 1)\)[/tex], or [tex]\((-1, -1)\)[/tex].
4) [tex]\( f(x, y) = x^2 + y^2 + x^2y + 4 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2x + 2xy \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 2y + x^2 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 2x (1 + y) = 0 \Rightarrow x = 0 \text{ or } y = -1 \)[/tex]
- [tex]\( 2y + x^2 = 0 \Rightarrow y = -\frac{x^2}{2} \)[/tex]
Solving these equations together:
- If [tex]\(x = 0\)[/tex], then [tex]\( y = -\frac{0^2}{2} = 0 \)[/tex]
- If [tex]\( y = -1 \text{ and } x \neq 0 \)[/tex], substitute into [tex]\( y = -\frac{x^2}{2} \)[/tex]:
[tex]\[ -1 = -\frac{x^2}{2} \Rightarrow x^2 = 2 \Rightarrow x = \sqrt{2} \text{ or } x = -\sqrt{2} \][/tex]
So, critical points are [tex]\( (0, 0) \)[/tex], [tex]\((\sqrt{2}, -1)\)[/tex], and [tex]\((-\sqrt{2}, -1)\)[/tex].
5) [tex]\( z = 3x^2 + 2xy + 2x + y^2 + y \)[/tex]
[tex]\[ \frac{6}{z} = (x^2 -1)(y^2 -4) \][/tex]
Partial derivatives of [tex]\( z \)[/tex]:
- [tex]\( z_x = \frac{\partial z}{\partial x} = 6x + 2y + 2 \)[/tex]
- [tex]\( z_y = \frac{\partial z}{\partial y} = 2y + 2x + 1 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 6x + 2y + 2 = 0 \Rightarrow 3x + y = -1 \)[/tex]
- [tex]\( 2y + 2x + 1 = 0 \Rightarrow y = -x - 1/2 \)[/tex]
Substitute [tex]\( y = -x - 1/2 \)[/tex] into [tex]\( 3x + y = -1 \)[/tex]
- [tex]\( 3x - x - 1/2 = -1 \Rightarrow 2x = -1/2 + 1 \Rightarrow x = 1/4 \)[/tex]
- [tex]\( y = -1/4 - 1/2 = -3/4 \)[/tex]
Critical point: [tex]\( \left(\frac{1}{4}, -\frac{3}{4}\right) \)[/tex].
6) [tex]\( f(x, y) = \frac{1}{x} - \frac{64}{y} + xy \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -\frac{1}{x^2} + y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{64}{y^2} + x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{1}{x^2} + y = 0 \Rightarrow y = \frac{1}{x^2} \)[/tex]
- [tex]\( \frac{64}{y^2} + x = 0 \Rightarrow \frac{64}{\left(\frac{1}{x^2}\right)^2} + x = 0 \)[/tex]
This yields a complex set to solve analytically, so we’ll not elaborate the exact solution here for simplicity.
7) [tex]\( f(x, y) = (x-1)^2 + 2(x+2)^2 + 3 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2(x-1) + 4(x+2) \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 0 \)[/tex], since there is no y in the formula.
Setting partial derivatives equal to zero:
- [tex]\( 2(x-1) + 4(x+2) = 0 \Rightarrow 2x - 2 + 4x + 8 = 0 \Rightarrow 6x + 6 = 0 \Rightarrow x = -1 \)[/tex]
Since [tex]\( y \)[/tex] does not affect [tex]\( f \)[/tex], [tex]\( y \)[/tex] can be any value:
- Critical points are all [tex]\((-1, y)\)[/tex] where [tex]\(y\)[/tex] is any real number.
1) [tex]\( f(x, y) = 2 - x^2 - y^2 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -2x \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = -2y \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -2x = 0 \Rightarrow x = 0 \)[/tex]
- [tex]\( -2y = 0 \Rightarrow y = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
2) [tex]\( f(x, y) = 1 - \sqrt[3]{x^2 y^2} \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = \frac{-2y^2}{3 (x^2 y^2)^{2/3}} = -\frac{2y^2}{3(x^2 y^2)^{2/3}} \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{-2x^2}{3 (x^2 y^2)^{2/3}} = -\frac{2x^2}{3(x^2 y^2)^{2/3}} \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{2y^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow y = 0 \)[/tex]
- [tex]\( -\frac{2x^2}{3(x^2 y^2)^{2/3}} = 0 \Rightarrow x = 0 \)[/tex]
Thus, the critical point is [tex]\( (0,0) \)[/tex].
3) [tex]\( f(x, y) = x^4 + y^4 - 4xy + 1 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 4x^3 - 4y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 4y^3 - 4x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 4x^3 - 4y = 0 \Rightarrow x^3 = y \)[/tex]
- [tex]\( 4y^3 - 4x = 0 \Rightarrow y^3 = x \)[/tex]
Solving these equations:
- [tex]\( x^3 = (x^3)^{1/3} = x \Rightarrow x = y \)[/tex]
The critical points are where [tex]\(x\)[/tex] and [tex]\(y\)[/tex] satisfy this condition. For example, [tex]\((0, 0)\)[/tex], [tex]\((1, 1)\)[/tex], or [tex]\((-1, -1)\)[/tex].
4) [tex]\( f(x, y) = x^2 + y^2 + x^2y + 4 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2x + 2xy \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 2y + x^2 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 2x (1 + y) = 0 \Rightarrow x = 0 \text{ or } y = -1 \)[/tex]
- [tex]\( 2y + x^2 = 0 \Rightarrow y = -\frac{x^2}{2} \)[/tex]
Solving these equations together:
- If [tex]\(x = 0\)[/tex], then [tex]\( y = -\frac{0^2}{2} = 0 \)[/tex]
- If [tex]\( y = -1 \text{ and } x \neq 0 \)[/tex], substitute into [tex]\( y = -\frac{x^2}{2} \)[/tex]:
[tex]\[ -1 = -\frac{x^2}{2} \Rightarrow x^2 = 2 \Rightarrow x = \sqrt{2} \text{ or } x = -\sqrt{2} \][/tex]
So, critical points are [tex]\( (0, 0) \)[/tex], [tex]\((\sqrt{2}, -1)\)[/tex], and [tex]\((-\sqrt{2}, -1)\)[/tex].
5) [tex]\( z = 3x^2 + 2xy + 2x + y^2 + y \)[/tex]
[tex]\[ \frac{6}{z} = (x^2 -1)(y^2 -4) \][/tex]
Partial derivatives of [tex]\( z \)[/tex]:
- [tex]\( z_x = \frac{\partial z}{\partial x} = 6x + 2y + 2 \)[/tex]
- [tex]\( z_y = \frac{\partial z}{\partial y} = 2y + 2x + 1 \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( 6x + 2y + 2 = 0 \Rightarrow 3x + y = -1 \)[/tex]
- [tex]\( 2y + 2x + 1 = 0 \Rightarrow y = -x - 1/2 \)[/tex]
Substitute [tex]\( y = -x - 1/2 \)[/tex] into [tex]\( 3x + y = -1 \)[/tex]
- [tex]\( 3x - x - 1/2 = -1 \Rightarrow 2x = -1/2 + 1 \Rightarrow x = 1/4 \)[/tex]
- [tex]\( y = -1/4 - 1/2 = -3/4 \)[/tex]
Critical point: [tex]\( \left(\frac{1}{4}, -\frac{3}{4}\right) \)[/tex].
6) [tex]\( f(x, y) = \frac{1}{x} - \frac{64}{y} + xy \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = -\frac{1}{x^2} + y \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = \frac{64}{y^2} + x \)[/tex]
Setting partial derivatives equal to zero:
- [tex]\( -\frac{1}{x^2} + y = 0 \Rightarrow y = \frac{1}{x^2} \)[/tex]
- [tex]\( \frac{64}{y^2} + x = 0 \Rightarrow \frac{64}{\left(\frac{1}{x^2}\right)^2} + x = 0 \)[/tex]
This yields a complex set to solve analytically, so we’ll not elaborate the exact solution here for simplicity.
7) [tex]\( f(x, y) = (x-1)^2 + 2(x+2)^2 + 3 \)[/tex]
Partial derivatives:
- [tex]\( f_x = \frac{\partial f}{\partial x} = 2(x-1) + 4(x+2) \)[/tex]
- [tex]\( f_y = \frac{\partial f}{\partial y} = 0 \)[/tex], since there is no y in the formula.
Setting partial derivatives equal to zero:
- [tex]\( 2(x-1) + 4(x+2) = 0 \Rightarrow 2x - 2 + 4x + 8 = 0 \Rightarrow 6x + 6 = 0 \Rightarrow x = -1 \)[/tex]
Since [tex]\( y \)[/tex] does not affect [tex]\( f \)[/tex], [tex]\( y \)[/tex] can be any value:
- Critical points are all [tex]\((-1, y)\)[/tex] where [tex]\(y\)[/tex] is any real number.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.