Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Simplify fully:

[tex]\[
\frac{4}{2-x} - \frac{3}{x}
\][/tex]

Sagot :

To simplify the expression [tex]\(\frac{4}{2-x} - \frac{3}{x}\)[/tex], follow these steps:

1. Identify the least common denominator (LCD):
The denominators are [tex]\(2 - x\)[/tex] and [tex]\(x\)[/tex]. The LCD is the product of these two denominators, which is [tex]\(x(2 - x)\)[/tex].

2. Rewrite each fraction with the LCD as the new denominator:
For the first fraction [tex]\(\frac{4}{2-x}\)[/tex], multiply the numerator and denominator by [tex]\(x\)[/tex]:
[tex]\[ \frac{4}{2-x} \cdot \frac{x}{x} = \frac{4x}{x(2-x)} \][/tex]

For the second fraction [tex]\(\frac{3}{x}\)[/tex], multiply the numerator and denominator by [tex]\(2 - x\)[/tex]:
[tex]\[ \frac{3}{x} \cdot \frac{2-x}{2-x} = \frac{3(2-x)}{x(2-x)} \][/tex]

3. Combine the fractions over the common denominator:
[tex]\[ \frac{4x}{x(2-x)} - \frac{3(2-x)}{x(2-x)} \][/tex]

Combine the numerators over the common denominator:
[tex]\[ \frac{4x - 3(2 - x)}{x(2 - x)} \][/tex]

4. Simplify the numerator:
Expand the numerator:
[tex]\[ 4x - 3(2 - x) = 4x - 6 + 3x = 4x + 3x - 6 = 7x - 6 \][/tex]

5. Write the final simplified expression:
[tex]\[ \frac{7x - 6}{x(2 - x)} \][/tex]

Thus, the simplified form of the given expression [tex]\(\frac{4}{2-x} - \frac{3}{x}\)[/tex] is:
[tex]\[ \frac{6 - 7x}{x(x - 2)} \][/tex]

Note that the change of sign in the final simplified form of the expression can be achieved by swapping [tex]\(2-x\)[/tex] to [tex]\(-(x-2)\)[/tex]:
[tex]\[ \frac{-(7x - 6)}{-x(x - 2)} = \frac{6 - 7x}{x(x - 2)} \][/tex]
So, the final answer is indeed:
[tex]\[ \frac{6 - 7x}{x(x - 2)} \][/tex]