Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which function has a domain of all real numbers, we need to analyze each function individually and identify the domain for each one.
Option A: [tex]\( y = -2(3x)^{\frac{1}{6}} \)[/tex]
This function involves a sixth root, [tex]\((3x)^{\frac{1}{6}}\)[/tex]. The expression inside the root, [tex]\(3x\)[/tex], must be non-negative for the root to be defined.
[tex]\[ 3x \geq 0 \implies x \geq 0 \][/tex]
Thus, the domain of this function is [tex]\( x \geq 0 \)[/tex]. This means Option A does not have a domain of all real numbers.
Option B: [tex]\( y = -x^{\frac{1}{2}} + 5 \)[/tex]
This function involves a square root, [tex]\(x^{\frac{1}{2}}\)[/tex]. The expression inside the root, [tex]\(x\)[/tex], must be non-negative for the root to be defined.
[tex]\[ x \geq 0 \][/tex]
Thus, the domain of this function is [tex]\( x \geq 0 \)[/tex]. This means Option B does not have a domain of all real numbers.
Option C: [tex]\( y = (x + 2)^{\frac{1}{4}} \)[/tex]
This function involves a fourth root, [tex]\((x+2)^{\frac{1}{4}}\)[/tex]. The expression inside the root, [tex]\(x + 2\)[/tex], must be non-negative for the root to be defined.
[tex]\[ x + 2 \geq 0 \implies x \geq -2 \][/tex]
Thus, the domain of this function is [tex]\( x \geq -2 \)[/tex]. This means Option C does not have a domain of all real numbers.
Option D: [tex]\( y = (2x)^{\frac{1}{3}} - 7 \)[/tex]
This function involves a cube root, [tex]\((2x)^{\frac{1}{3}}\)[/tex]. Cube roots are defined for all real numbers.
There are no restrictions on the value of [tex]\(x\)[/tex]. This means the domain of this function is all real numbers.
Conclusion:
From the analysis, it is clear that Option D, [tex]\( y = (2x)^{\frac{1}{3}} - 7 \)[/tex], is the only function that has a domain of all real numbers.
So, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
Option A: [tex]\( y = -2(3x)^{\frac{1}{6}} \)[/tex]
This function involves a sixth root, [tex]\((3x)^{\frac{1}{6}}\)[/tex]. The expression inside the root, [tex]\(3x\)[/tex], must be non-negative for the root to be defined.
[tex]\[ 3x \geq 0 \implies x \geq 0 \][/tex]
Thus, the domain of this function is [tex]\( x \geq 0 \)[/tex]. This means Option A does not have a domain of all real numbers.
Option B: [tex]\( y = -x^{\frac{1}{2}} + 5 \)[/tex]
This function involves a square root, [tex]\(x^{\frac{1}{2}}\)[/tex]. The expression inside the root, [tex]\(x\)[/tex], must be non-negative for the root to be defined.
[tex]\[ x \geq 0 \][/tex]
Thus, the domain of this function is [tex]\( x \geq 0 \)[/tex]. This means Option B does not have a domain of all real numbers.
Option C: [tex]\( y = (x + 2)^{\frac{1}{4}} \)[/tex]
This function involves a fourth root, [tex]\((x+2)^{\frac{1}{4}}\)[/tex]. The expression inside the root, [tex]\(x + 2\)[/tex], must be non-negative for the root to be defined.
[tex]\[ x + 2 \geq 0 \implies x \geq -2 \][/tex]
Thus, the domain of this function is [tex]\( x \geq -2 \)[/tex]. This means Option C does not have a domain of all real numbers.
Option D: [tex]\( y = (2x)^{\frac{1}{3}} - 7 \)[/tex]
This function involves a cube root, [tex]\((2x)^{\frac{1}{3}}\)[/tex]. Cube roots are defined for all real numbers.
There are no restrictions on the value of [tex]\(x\)[/tex]. This means the domain of this function is all real numbers.
Conclusion:
From the analysis, it is clear that Option D, [tex]\( y = (2x)^{\frac{1}{3}} - 7 \)[/tex], is the only function that has a domain of all real numbers.
So, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.