At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

An interior angle of a regular polygon is 168°. Find the number of sides of the polygon.

A. 30
B. 24
C. 15
D. 12

Sagot :

To solve for the number of sides of a regular polygon given that each interior angle is 168°, we can use the relationship that defines the interior angle of a regular polygon. The formula for the interior angle [tex]\( \theta \)[/tex] of a regular polygon with [tex]\( n \)[/tex] sides is given by:

[tex]\[ \theta = \frac{(n-2) \times 180^\circ}{n} \][/tex]

We are given that [tex]\( \theta = 168^\circ \)[/tex], so we can set up the equation:

[tex]\[ 168 = \frac{(n-2) \times 180}{n} \][/tex]

First, let's simplify and solve for [tex]\( n \)[/tex].

1. Multiply both sides by [tex]\( n \)[/tex] to eliminate the fraction:

[tex]\[ 168n = (n-2) \times 180 \][/tex]

2. Distribute the 180:

[tex]\[ 168n = 180n - 360 \][/tex]

3. Move all terms involving [tex]\( n \)[/tex] to one side and constants to the other side:

[tex]\[ 180n - 168n = 360 \][/tex]
[tex]\[ 12n = 360 \][/tex]

4. Solve for [tex]\( n \)[/tex]:

[tex]\[ n = \frac{360}{12} \][/tex]
[tex]\[ n = 30 \][/tex]

Therefore, the number of sides of the polygon is [tex]\( 30 \)[/tex].

So the correct answer is:
A. 30