Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To calculate the mass that Sarita lifted given the power, height, and time, we can use the relationship between power, work, and energy. Let’s break it down step by step:
1. Power (P) is the rate at which work is done. It is given by the formula:
[tex]\[ P = \frac{\text{Work}}{\text{time}} \][/tex]
Here, the power provided is [tex]\(480 \, \text{watts}\)[/tex].
2. Work (W) done is equivalent to the gravitational potential energy gained by the mass lifted. This can be calculated using:
[tex]\[ W = m \cdot g \cdot h \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity ([tex]\(9.81 \, \text{m/s}^2\)[/tex]), and [tex]\(h\)[/tex] is the height ([tex]\(10 \, \text{meters}\)[/tex]).
3. Rearrange the power formula to solve for the work done:
[tex]\[ \text{Work} = P \cdot \text{time} \][/tex]
Given the power ([tex]\(480 \, \text{watts}\)[/tex]) and the time ([tex]\(12 \, \text{seconds}\)[/tex]):
[tex]\[ \text{Work} = 480 \, \text{watts} \cdot 12 \, \text{seconds} = 5760 \, \text{joules} \][/tex]
4. Substitute this value of work into the potential energy formula to solve for [tex]\(m\)[/tex]:
[tex]\[ 5760 \, \text{joules} = m \cdot 9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters} \][/tex]
5. Isolate [tex]\(m\)[/tex] (mass) to find its value:
[tex]\[ m = \frac{5760 \, \text{joules}}{9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters}} \][/tex]
[tex]\[ m \approx 58.716 \, \text{kg} \][/tex]
Conclusion:
So, Sarita lifted approximately [tex]\(58.716 \, \text{kg}\)[/tex] up to [tex]\(10 \, \text{meters}\)[/tex] in [tex]\(12 \, \text{seconds}\)[/tex].
1. Power (P) is the rate at which work is done. It is given by the formula:
[tex]\[ P = \frac{\text{Work}}{\text{time}} \][/tex]
Here, the power provided is [tex]\(480 \, \text{watts}\)[/tex].
2. Work (W) done is equivalent to the gravitational potential energy gained by the mass lifted. This can be calculated using:
[tex]\[ W = m \cdot g \cdot h \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity ([tex]\(9.81 \, \text{m/s}^2\)[/tex]), and [tex]\(h\)[/tex] is the height ([tex]\(10 \, \text{meters}\)[/tex]).
3. Rearrange the power formula to solve for the work done:
[tex]\[ \text{Work} = P \cdot \text{time} \][/tex]
Given the power ([tex]\(480 \, \text{watts}\)[/tex]) and the time ([tex]\(12 \, \text{seconds}\)[/tex]):
[tex]\[ \text{Work} = 480 \, \text{watts} \cdot 12 \, \text{seconds} = 5760 \, \text{joules} \][/tex]
4. Substitute this value of work into the potential energy formula to solve for [tex]\(m\)[/tex]:
[tex]\[ 5760 \, \text{joules} = m \cdot 9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters} \][/tex]
5. Isolate [tex]\(m\)[/tex] (mass) to find its value:
[tex]\[ m = \frac{5760 \, \text{joules}}{9.81 \, \text{m/s}^2 \cdot 10 \, \text{meters}} \][/tex]
[tex]\[ m \approx 58.716 \, \text{kg} \][/tex]
Conclusion:
So, Sarita lifted approximately [tex]\(58.716 \, \text{kg}\)[/tex] up to [tex]\(10 \, \text{meters}\)[/tex] in [tex]\(12 \, \text{seconds}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.