At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's rewrite the given exponents using relevant exponent rules step by step.
### a. Rewrite [tex]\(4^{5x}\)[/tex] using exponent rules
First, recognize that [tex]\(4\)[/tex] can be expressed as [tex]\(2^2\)[/tex]:
[tex]\[ 4 = 2^2 \][/tex]
So, [tex]\(4^{5x}\)[/tex] becomes:
[tex]\[ 4^{5x} = (2^2)^{5x} \][/tex]
Using the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex], we can simplify:
[tex]\[ (2^2)^{5x} = 2^{2 \cdot 5x} = 2^{10x} \][/tex]
Thus:
[tex]\[ 4^{5x} \can be rewritten as \boxed{2^{10x}} \][/tex]
### b. Rewrite [tex]\(3^{3x+1}\)[/tex] using exponent rules
We can use the property of exponents that states [tex]\(a^{m+n} = a^m \cdot a^n\)[/tex]:
[tex]\[ 3^{3x+1} = 3^{3x} \cdot 3^1 \][/tex]
Thus:
[tex]\[ 3^{3x+1}\ can be rewritten as \boxed{3^{3x} \cdot 3^1} \][/tex]
### c. Rewrite [tex]\(8^{x-y}\)[/tex] using exponent rules
First, recognize that [tex]\(8\)[/tex] can be expressed as [tex]\(2^3\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
So, [tex]\(8^{x-y}\)[/tex] becomes:
[tex]\[ 8^{x-y} = (2^3)^{x-y} \][/tex]
Using the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex], we can simplify:
[tex]\[ (2^3)^{x-y} = 2^{3 \cdot (x-y)} = 2^{3x - 3y} \][/tex]
Thus:
[tex]\[ 8^{x-y} \can be rewritten as \boxed{2^{3x-3y}} \][/tex]
In summary:
- [tex]\(4^{5x} \can be rewritten as 2^{10x}\)[/tex]
- [tex]\(3^{3x+1} \can be rewritten as 3^{3x} \cdot 3^1\)[/tex]
- [tex]\(8^{x-y} \can be rewritten as 2^{3x-3y}\)[/tex]
### a. Rewrite [tex]\(4^{5x}\)[/tex] using exponent rules
First, recognize that [tex]\(4\)[/tex] can be expressed as [tex]\(2^2\)[/tex]:
[tex]\[ 4 = 2^2 \][/tex]
So, [tex]\(4^{5x}\)[/tex] becomes:
[tex]\[ 4^{5x} = (2^2)^{5x} \][/tex]
Using the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex], we can simplify:
[tex]\[ (2^2)^{5x} = 2^{2 \cdot 5x} = 2^{10x} \][/tex]
Thus:
[tex]\[ 4^{5x} \can be rewritten as \boxed{2^{10x}} \][/tex]
### b. Rewrite [tex]\(3^{3x+1}\)[/tex] using exponent rules
We can use the property of exponents that states [tex]\(a^{m+n} = a^m \cdot a^n\)[/tex]:
[tex]\[ 3^{3x+1} = 3^{3x} \cdot 3^1 \][/tex]
Thus:
[tex]\[ 3^{3x+1}\ can be rewritten as \boxed{3^{3x} \cdot 3^1} \][/tex]
### c. Rewrite [tex]\(8^{x-y}\)[/tex] using exponent rules
First, recognize that [tex]\(8\)[/tex] can be expressed as [tex]\(2^3\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
So, [tex]\(8^{x-y}\)[/tex] becomes:
[tex]\[ 8^{x-y} = (2^3)^{x-y} \][/tex]
Using the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex], we can simplify:
[tex]\[ (2^3)^{x-y} = 2^{3 \cdot (x-y)} = 2^{3x - 3y} \][/tex]
Thus:
[tex]\[ 8^{x-y} \can be rewritten as \boxed{2^{3x-3y}} \][/tex]
In summary:
- [tex]\(4^{5x} \can be rewritten as 2^{10x}\)[/tex]
- [tex]\(3^{3x+1} \can be rewritten as 3^{3x} \cdot 3^1\)[/tex]
- [tex]\(8^{x-y} \can be rewritten as 2^{3x-3y}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.