Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the form of the Sum of Cubes identity, let's analyze each given option and recall the standard forms of the sum and difference of cubes:
The Sum of Cubes identity is a well-known algebraic formula that factors a sum of two cubes. Specifically, for any two real numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], the identity states:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Now look at the given options:
A. [tex]\( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)[/tex]
B. [tex]\( a^3 + b^3 = (a - b)(a^2 + ab + b^2) \)[/tex]
C. [tex]\( a^3 - b^3 = (a + b)(a^2 + ab + b^2) \)[/tex]
D. [tex]\( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \)[/tex]
Let's match these options with the identity. The statement in option A directly matches our identity for the sum of cubes.
Therefore, the correct form of the Sum of Cubes identity is:
[tex]\[ \boxed{a^3 + b^3 = (a + b)(a^2 - ab + b^2)} \][/tex]
So, the correct choice is Option A.
The Sum of Cubes identity is a well-known algebraic formula that factors a sum of two cubes. Specifically, for any two real numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], the identity states:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Now look at the given options:
A. [tex]\( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)[/tex]
B. [tex]\( a^3 + b^3 = (a - b)(a^2 + ab + b^2) \)[/tex]
C. [tex]\( a^3 - b^3 = (a + b)(a^2 + ab + b^2) \)[/tex]
D. [tex]\( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \)[/tex]
Let's match these options with the identity. The statement in option A directly matches our identity for the sum of cubes.
Therefore, the correct form of the Sum of Cubes identity is:
[tex]\[ \boxed{a^3 + b^3 = (a + b)(a^2 - ab + b^2)} \][/tex]
So, the correct choice is Option A.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.