Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
It seems like the layout and phrasing of the question might have been jumbled. Allow me to clarify and address the math problem following the given information and logical steps.
Given:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
Proof:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = 1 \][/tex]
We want to show that the given relationships hold consistently through the statements.
1. Given:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
This is our initial equation, given in the problem. Here, [tex]\( r \)[/tex] can be thought of as the radius in a coordinate system.
2. Rewrite in the form of trigonometric identities:
[tex]\[ \frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{r^2}{r^2} \][/tex]
Dividing both sides of the given equation by [tex]\( r^2 \)[/tex], simplifies to:
[tex]\[ \frac{x^2}{r^2} + \frac{y^2}{r^2} = 1 \][/tex]
3. Transform into trigonometric functions:
[tex]\[ \left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1 \][/tex]
This step uses the trigonometric expressions where [tex]\( \cos(\theta) = \frac{x}{r} \)[/tex] and [tex]\( \sin(\theta) = \frac{y}{r} \)[/tex].
4. Define trigonometric functions in terms of [tex]\( x, y, \)[/tex] and [tex]\( r \)[/tex]:
[tex]\[ \cos(\theta) = \frac{x}{r} \][/tex]
[tex]\[ \sin(\theta) = \frac{y}{r} \][/tex]
5. Square the trigonometric identities and sum them:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = \left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 \][/tex]
By previously derived identities, this simplifies to:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = 1 \][/tex]
Conclusion:
The given statements follow logically and demonstrate that [tex]\( x^2 + y^2 = r^2 \)[/tex] translates through trigonometric identities to show that [tex]\( \cos^2(\theta) + \sin^2(\theta) = 1 \)[/tex].
Thus, the correct proof confirms the fundamental trigonometric identity.
Given:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
Proof:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = 1 \][/tex]
We want to show that the given relationships hold consistently through the statements.
1. Given:
[tex]\[ x^2 + y^2 = r^2 \][/tex]
This is our initial equation, given in the problem. Here, [tex]\( r \)[/tex] can be thought of as the radius in a coordinate system.
2. Rewrite in the form of trigonometric identities:
[tex]\[ \frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{r^2}{r^2} \][/tex]
Dividing both sides of the given equation by [tex]\( r^2 \)[/tex], simplifies to:
[tex]\[ \frac{x^2}{r^2} + \frac{y^2}{r^2} = 1 \][/tex]
3. Transform into trigonometric functions:
[tex]\[ \left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1 \][/tex]
This step uses the trigonometric expressions where [tex]\( \cos(\theta) = \frac{x}{r} \)[/tex] and [tex]\( \sin(\theta) = \frac{y}{r} \)[/tex].
4. Define trigonometric functions in terms of [tex]\( x, y, \)[/tex] and [tex]\( r \)[/tex]:
[tex]\[ \cos(\theta) = \frac{x}{r} \][/tex]
[tex]\[ \sin(\theta) = \frac{y}{r} \][/tex]
5. Square the trigonometric identities and sum them:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = \left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 \][/tex]
By previously derived identities, this simplifies to:
[tex]\[ \cos^2(\theta) + \sin^2(\theta) = 1 \][/tex]
Conclusion:
The given statements follow logically and demonstrate that [tex]\( x^2 + y^2 = r^2 \)[/tex] translates through trigonometric identities to show that [tex]\( \cos^2(\theta) + \sin^2(\theta) = 1 \)[/tex].
Thus, the correct proof confirms the fundamental trigonometric identity.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.