Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the total number of molecules in 34.0 grams of ammonia ([tex]\(NH_3\)[/tex]), we will go through a series of steps involving finding the molar mass, calculating the number of moles, and then using Avogadro's number.
### Step 1: Determine the molar mass of [tex]\(NH_3\)[/tex]
The molar mass of a compound is the sum of the atomic masses of its constituent elements. For [tex]\(NH_3\)[/tex]:
- The atomic mass of nitrogen (N) is 14.01 g/mol.
- The atomic mass of hydrogen (H) is 1.008 g/mol.
Therefore, the molar mass of [tex]\(NH_3\)[/tex] is:
[tex]\[ \text{Molar mass of } NH_3 = 14.01 + (3 \times 1.008) = 17.034 \text{ g/mol} \][/tex]
### Step 2: Calculate the number of moles of [tex]\(NH_3\)[/tex]
To find the number of moles, we use the formula:
[tex]\[ \text{Number of moles} = \frac{\text{Mass}}{\text{Molar mass}} \][/tex]
Given the mass of [tex]\(NH_3\)[/tex] is 34.0 grams, the number of moles is:
[tex]\[ \text{Number of moles of } NH_3 = \frac{34.0 \text{ g}}{17.034 \text{ g/mol}} \approx 1.996 \text{ moles} \][/tex]
### Step 3: Calculate the total number of molecules
Avogadro's number, [tex]\(6.02 \times 10^{23}\)[/tex], is the number of molecules in one mole of a substance. To find the total number of molecules, we multiply the number of moles by Avogadro's number:
[tex]\[ \text{Total number of molecules} = 1.996 \text{ moles} \times 6.02 \times 10^{23} \text{ molecules/mole} \approx 1.2015968 \times 10^{24} \text{ molecules} \][/tex]
### Conclusion
Considering the closest approximation to our calculated number of molecules, which is around [tex]\(1.20 \times 10^{24}\)[/tex] molecules, the correct answer among the given options is:
[tex]\[ \boxed{2.00\left(6.02 \times 10^{23}\right)} \][/tex]
### Step 1: Determine the molar mass of [tex]\(NH_3\)[/tex]
The molar mass of a compound is the sum of the atomic masses of its constituent elements. For [tex]\(NH_3\)[/tex]:
- The atomic mass of nitrogen (N) is 14.01 g/mol.
- The atomic mass of hydrogen (H) is 1.008 g/mol.
Therefore, the molar mass of [tex]\(NH_3\)[/tex] is:
[tex]\[ \text{Molar mass of } NH_3 = 14.01 + (3 \times 1.008) = 17.034 \text{ g/mol} \][/tex]
### Step 2: Calculate the number of moles of [tex]\(NH_3\)[/tex]
To find the number of moles, we use the formula:
[tex]\[ \text{Number of moles} = \frac{\text{Mass}}{\text{Molar mass}} \][/tex]
Given the mass of [tex]\(NH_3\)[/tex] is 34.0 grams, the number of moles is:
[tex]\[ \text{Number of moles of } NH_3 = \frac{34.0 \text{ g}}{17.034 \text{ g/mol}} \approx 1.996 \text{ moles} \][/tex]
### Step 3: Calculate the total number of molecules
Avogadro's number, [tex]\(6.02 \times 10^{23}\)[/tex], is the number of molecules in one mole of a substance. To find the total number of molecules, we multiply the number of moles by Avogadro's number:
[tex]\[ \text{Total number of molecules} = 1.996 \text{ moles} \times 6.02 \times 10^{23} \text{ molecules/mole} \approx 1.2015968 \times 10^{24} \text{ molecules} \][/tex]
### Conclusion
Considering the closest approximation to our calculated number of molecules, which is around [tex]\(1.20 \times 10^{24}\)[/tex] molecules, the correct answer among the given options is:
[tex]\[ \boxed{2.00\left(6.02 \times 10^{23}\right)} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.