Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which line is perpendicular to a line that has a slope of [tex]\(-\frac{5}{6}\)[/tex], we need to figure out the slope of the perpendicular line.
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. So, if the slope of the original line is [tex]\( m_1 = -\frac{5}{6} \)[/tex], the slope [tex]\( m_2 \)[/tex] of the perpendicular line can be calculated using the relationship:
[tex]\[ m_1 \times m_2 = -1 \][/tex]
Given the slope of the original line [tex]\( m_1 = -\frac{5}{6} \)[/tex], we substitute this into the equation:
[tex]\[ -\frac{5}{6} \times m_2 = -1 \][/tex]
To solve for [tex]\( m_2 \)[/tex], we rearrange the equation:
[tex]\[ m_2 = \frac{-1}{-\frac{5}{6}} \][/tex]
When we simplify [tex]\(\frac{-1}{-\frac{5}{6}}\)[/tex], we get:
[tex]\[ m_2 = \frac{6}{5} = 1.2 \][/tex]
So, the slope of the perpendicular line is [tex]\( 1.2 \)[/tex].
Thus, any line with a slope of [tex]\( 1.2 \)[/tex] will be perpendicular to a line with a slope of [tex]\( -\frac{5}{6} \)[/tex]. To identify which specific line (JK, LM, NO, PQ) corresponds to this slope, further information about the slopes of these lines would be required, which is not provided in the question. Therefore, we conclude that the perpendicular line to the given slope of [tex]\(-\frac{5}{6}\)[/tex] has a slope of [tex]\(1.2\)[/tex].
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. So, if the slope of the original line is [tex]\( m_1 = -\frac{5}{6} \)[/tex], the slope [tex]\( m_2 \)[/tex] of the perpendicular line can be calculated using the relationship:
[tex]\[ m_1 \times m_2 = -1 \][/tex]
Given the slope of the original line [tex]\( m_1 = -\frac{5}{6} \)[/tex], we substitute this into the equation:
[tex]\[ -\frac{5}{6} \times m_2 = -1 \][/tex]
To solve for [tex]\( m_2 \)[/tex], we rearrange the equation:
[tex]\[ m_2 = \frac{-1}{-\frac{5}{6}} \][/tex]
When we simplify [tex]\(\frac{-1}{-\frac{5}{6}}\)[/tex], we get:
[tex]\[ m_2 = \frac{6}{5} = 1.2 \][/tex]
So, the slope of the perpendicular line is [tex]\( 1.2 \)[/tex].
Thus, any line with a slope of [tex]\( 1.2 \)[/tex] will be perpendicular to a line with a slope of [tex]\( -\frac{5}{6} \)[/tex]. To identify which specific line (JK, LM, NO, PQ) corresponds to this slope, further information about the slopes of these lines would be required, which is not provided in the question. Therefore, we conclude that the perpendicular line to the given slope of [tex]\(-\frac{5}{6}\)[/tex] has a slope of [tex]\(1.2\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.