At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which line is perpendicular to a line that has a slope of [tex]\(-\frac{5}{6}\)[/tex], we need to figure out the slope of the perpendicular line.
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. So, if the slope of the original line is [tex]\( m_1 = -\frac{5}{6} \)[/tex], the slope [tex]\( m_2 \)[/tex] of the perpendicular line can be calculated using the relationship:
[tex]\[ m_1 \times m_2 = -1 \][/tex]
Given the slope of the original line [tex]\( m_1 = -\frac{5}{6} \)[/tex], we substitute this into the equation:
[tex]\[ -\frac{5}{6} \times m_2 = -1 \][/tex]
To solve for [tex]\( m_2 \)[/tex], we rearrange the equation:
[tex]\[ m_2 = \frac{-1}{-\frac{5}{6}} \][/tex]
When we simplify [tex]\(\frac{-1}{-\frac{5}{6}}\)[/tex], we get:
[tex]\[ m_2 = \frac{6}{5} = 1.2 \][/tex]
So, the slope of the perpendicular line is [tex]\( 1.2 \)[/tex].
Thus, any line with a slope of [tex]\( 1.2 \)[/tex] will be perpendicular to a line with a slope of [tex]\( -\frac{5}{6} \)[/tex]. To identify which specific line (JK, LM, NO, PQ) corresponds to this slope, further information about the slopes of these lines would be required, which is not provided in the question. Therefore, we conclude that the perpendicular line to the given slope of [tex]\(-\frac{5}{6}\)[/tex] has a slope of [tex]\(1.2\)[/tex].
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. So, if the slope of the original line is [tex]\( m_1 = -\frac{5}{6} \)[/tex], the slope [tex]\( m_2 \)[/tex] of the perpendicular line can be calculated using the relationship:
[tex]\[ m_1 \times m_2 = -1 \][/tex]
Given the slope of the original line [tex]\( m_1 = -\frac{5}{6} \)[/tex], we substitute this into the equation:
[tex]\[ -\frac{5}{6} \times m_2 = -1 \][/tex]
To solve for [tex]\( m_2 \)[/tex], we rearrange the equation:
[tex]\[ m_2 = \frac{-1}{-\frac{5}{6}} \][/tex]
When we simplify [tex]\(\frac{-1}{-\frac{5}{6}}\)[/tex], we get:
[tex]\[ m_2 = \frac{6}{5} = 1.2 \][/tex]
So, the slope of the perpendicular line is [tex]\( 1.2 \)[/tex].
Thus, any line with a slope of [tex]\( 1.2 \)[/tex] will be perpendicular to a line with a slope of [tex]\( -\frac{5}{6} \)[/tex]. To identify which specific line (JK, LM, NO, PQ) corresponds to this slope, further information about the slopes of these lines would be required, which is not provided in the question. Therefore, we conclude that the perpendicular line to the given slope of [tex]\(-\frac{5}{6}\)[/tex] has a slope of [tex]\(1.2\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.