Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] represents a relation, a function, both a relation and a function, or neither, let's first understand what each term means.
1. Relation: In mathematics, a relation is simply a set of ordered pairs. In the form [tex]\( y = f(x) \)[/tex], a relation associates elements of one set with elements of another set. So any equation that links [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be considered a relation.
2. Function: A function is a special type of relation where each input (in this case, each [tex]\( x \)[/tex] value) is associated with exactly one output (each corresponding [tex]\( y \)[/tex] value). No [tex]\( x \)[/tex] value can produce more than one [tex]\( y \)[/tex] value in a function.
Now, let's analyze the given equation:
[tex]\[ y = 3x^2 - 9x + 20 \][/tex]
This is a quadratic equation because it has the highest degree term [tex]\( x^2 \)[/tex]. Quadratic equations represent parabolas when graphed on a coordinate plane.
1. Relation Check: The given equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] associates each value of [tex]\( x \)[/tex] with a value of [tex]\( y \)[/tex]. So it is indeed a relation.
2. Function Check: For this quadratic equation, for each value of [tex]\( x \)[/tex], the computation [tex]\( 3x^2 - 9x + 20 \)[/tex] results in a single value for [tex]\( y \)[/tex]. Therefore, each input [tex]\( x \)[/tex] maps to exactly one output [tex]\( y \)[/tex]. Hence, it satisfies the condition of being a function.
Since the equation satisfies both the criteria of being a relation (it links pairs [tex]\( (x, y) \)[/tex]) and a function (each [tex]\( x \)[/tex] maps to a single [tex]\( y \)[/tex]), we conclude:
The equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] is both a relation and a function.
Therefore, the correct answer is:
B. both a relation and a function
1. Relation: In mathematics, a relation is simply a set of ordered pairs. In the form [tex]\( y = f(x) \)[/tex], a relation associates elements of one set with elements of another set. So any equation that links [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be considered a relation.
2. Function: A function is a special type of relation where each input (in this case, each [tex]\( x \)[/tex] value) is associated with exactly one output (each corresponding [tex]\( y \)[/tex] value). No [tex]\( x \)[/tex] value can produce more than one [tex]\( y \)[/tex] value in a function.
Now, let's analyze the given equation:
[tex]\[ y = 3x^2 - 9x + 20 \][/tex]
This is a quadratic equation because it has the highest degree term [tex]\( x^2 \)[/tex]. Quadratic equations represent parabolas when graphed on a coordinate plane.
1. Relation Check: The given equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] associates each value of [tex]\( x \)[/tex] with a value of [tex]\( y \)[/tex]. So it is indeed a relation.
2. Function Check: For this quadratic equation, for each value of [tex]\( x \)[/tex], the computation [tex]\( 3x^2 - 9x + 20 \)[/tex] results in a single value for [tex]\( y \)[/tex]. Therefore, each input [tex]\( x \)[/tex] maps to exactly one output [tex]\( y \)[/tex]. Hence, it satisfies the condition of being a function.
Since the equation satisfies both the criteria of being a relation (it links pairs [tex]\( (x, y) \)[/tex]) and a function (each [tex]\( x \)[/tex] maps to a single [tex]\( y \)[/tex]), we conclude:
The equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] is both a relation and a function.
Therefore, the correct answer is:
B. both a relation and a function
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.