Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the enthalpy change ([tex]\(\Delta H_{\text{rxn}}\)[/tex]) for the reaction
[tex]\[ \text{NO(g) + O(g) → NO}_2\text{(g)}, \][/tex]
we will use the given reactions and their associated enthalpy changes:
1. [tex]\[\text{NO(g) + O}_3\text{(g) → NO}_2\text{(g) + O}_2\text{(g)} \quad \Delta H_1 = -198.9 \, \text{kJ} \][/tex]
2. [tex]\[\frac{3}{2} \text{O}_2\text{(g) → O}_3\text{(g)} \quad \Delta H_2 = 142.3 \, \text{kJ} \][/tex]
3. [tex]\[\text{O(g) → } \frac{1}{2} \text{O}_2\text{(g)} \quad \Delta H_3 = -247.5 \, \text{kJ} \][/tex]
Our goal is to derive the reaction [tex]\(\text{NO(g) + O(g) → NO}_2\text{(g)}\)[/tex]. Let's proceed step-by-step:
1. Start with Reaction 1:
[tex]\[ \text{NO(g) + O}_3\text{(g) → NO}_2\text{(g) + O}_2\text{(g)} \][/tex]
[tex]\[ \Delta H_1 = -198.9 \, \text{kJ} \][/tex]
2. To eliminate [tex]\(\text{O}_3\)[/tex] and introduce [tex]\(\text{O(g)}\)[/tex], we use Reaction 2 and Reaction 3. First, reverse Reaction 2:
[tex]\[ \text{O}_3\text{(g) → } \frac{3}{2} \text{O}_2\text{(g)} \quad \Delta H_2 \text{ (reversed)} = -142.3 \, \text{kJ} \][/tex]
3. Next, take half of Reaction 3 to match the amount of oxygen atoms:
[tex]\[ \frac{1}{2} \text{O(g) → }\frac{1}{4} \text{O}_2\text{(g)} \right) \][/tex]
When halving [tex]\(\Delta H_3\)[/tex]:
[tex]\[ \Delta H_3 \text{ (halved)} = \frac{-247.5}{2} \, \text{kJ} = -123.75 \, \text{kJ} \][/tex]
4. Now, we combine all these enthalpy changes ([tex]\(\Delta H_1\)[/tex], [tex]\(\Delta H_2\)[/tex] reversed, and [tex]\(\Delta H_3\)[/tex] halved):
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 \text{ (reversed)} + \Delta H_3 \text{ (halved)} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -198.9 \, \text{kJ} + (-142.3 \, \text{kJ}) + (-123.75 \, \text{kJ}) \][/tex]
5. Adding these values together:
[tex]\[ \Delta H_{\text{rxn}} = -198.9 + -142.3 + -123.75 \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -464.95 \, \text{kJ} \][/tex]
Therefore, the enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] for the reaction [tex]\(\text{NO(g) + O(g) → NO}_2\text{(g)}\)[/tex] is
[tex]\[ \boxed{-464.95 \, \text{kJ}} \][/tex]
[tex]\[ \text{NO(g) + O(g) → NO}_2\text{(g)}, \][/tex]
we will use the given reactions and their associated enthalpy changes:
1. [tex]\[\text{NO(g) + O}_3\text{(g) → NO}_2\text{(g) + O}_2\text{(g)} \quad \Delta H_1 = -198.9 \, \text{kJ} \][/tex]
2. [tex]\[\frac{3}{2} \text{O}_2\text{(g) → O}_3\text{(g)} \quad \Delta H_2 = 142.3 \, \text{kJ} \][/tex]
3. [tex]\[\text{O(g) → } \frac{1}{2} \text{O}_2\text{(g)} \quad \Delta H_3 = -247.5 \, \text{kJ} \][/tex]
Our goal is to derive the reaction [tex]\(\text{NO(g) + O(g) → NO}_2\text{(g)}\)[/tex]. Let's proceed step-by-step:
1. Start with Reaction 1:
[tex]\[ \text{NO(g) + O}_3\text{(g) → NO}_2\text{(g) + O}_2\text{(g)} \][/tex]
[tex]\[ \Delta H_1 = -198.9 \, \text{kJ} \][/tex]
2. To eliminate [tex]\(\text{O}_3\)[/tex] and introduce [tex]\(\text{O(g)}\)[/tex], we use Reaction 2 and Reaction 3. First, reverse Reaction 2:
[tex]\[ \text{O}_3\text{(g) → } \frac{3}{2} \text{O}_2\text{(g)} \quad \Delta H_2 \text{ (reversed)} = -142.3 \, \text{kJ} \][/tex]
3. Next, take half of Reaction 3 to match the amount of oxygen atoms:
[tex]\[ \frac{1}{2} \text{O(g) → }\frac{1}{4} \text{O}_2\text{(g)} \right) \][/tex]
When halving [tex]\(\Delta H_3\)[/tex]:
[tex]\[ \Delta H_3 \text{ (halved)} = \frac{-247.5}{2} \, \text{kJ} = -123.75 \, \text{kJ} \][/tex]
4. Now, we combine all these enthalpy changes ([tex]\(\Delta H_1\)[/tex], [tex]\(\Delta H_2\)[/tex] reversed, and [tex]\(\Delta H_3\)[/tex] halved):
[tex]\[ \Delta H_{\text{rxn}} = \Delta H_1 + \Delta H_2 \text{ (reversed)} + \Delta H_3 \text{ (halved)} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -198.9 \, \text{kJ} + (-142.3 \, \text{kJ}) + (-123.75 \, \text{kJ}) \][/tex]
5. Adding these values together:
[tex]\[ \Delta H_{\text{rxn}} = -198.9 + -142.3 + -123.75 \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = -464.95 \, \text{kJ} \][/tex]
Therefore, the enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] for the reaction [tex]\(\text{NO(g) + O(g) → NO}_2\text{(g)}\)[/tex] is
[tex]\[ \boxed{-464.95 \, \text{kJ}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.