Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Consider the equation below:

[tex]\[
-2(bx - 5) = 16
\][/tex]

The value of [tex]\( x \)[/tex] in terms of [tex]\( b \)[/tex] is [tex]\( \boxed{} \)[/tex]

The value of [tex]\( x \)[/tex] when [tex]\( b \)[/tex] is 3 is [tex]\( \boxed{} \)[/tex]

Sagot :

Certainly! Let's solve the equation step-by-step.

Consider the equation:
[tex]\[ -2(bx - 5) = 16 \][/tex]

### Solving for [tex]\(x\)[/tex] in terms of [tex]\(b\)[/tex]:

1. Distribute -2 on the left side:
[tex]\[ -2 \cdot (bx) + (-2) \cdot (-5) = -2bx + 10 \][/tex]

2. Substitute and equate it to 16:
[tex]\[ -2bx + 10 = 16 \][/tex]

3. Isolate the term with [tex]\(x\)[/tex] by subtracting 10 from both sides:
[tex]\[ -2bx + 10 - 10 = 16 - 10 \][/tex]
[tex]\[ -2bx = 6 \][/tex]

4. Solve for [tex]\(x\)[/tex] by dividing both sides by [tex]\(-2b\)[/tex]:
[tex]\[ x = \frac{6}{-2b} \][/tex]
Simplify the fraction:
[tex]\[ x = \frac{6}{-2b} = \frac{6}{-2} \cdot \frac{1}{b} = -3 \cdot \frac{1}{b} = -\frac{3}{b} \][/tex]

Thus, the value of [tex]\(x\)[/tex] in terms of [tex]\(b\)[/tex] is [tex]\(-\frac{3}{b}\)[/tex].

### Solving for [tex]\(x\)[/tex] when [tex]\(b\)[/tex] is 3:

1. Substitute [tex]\(b = 3\)[/tex] into the equation [tex]\( x = -\frac{3}{b} \)[/tex]:
[tex]\[ x = -\frac{3}{3} \][/tex]

2. Simplify:
[tex]\[ x = -1 \][/tex]

Thus, the value of [tex]\(x\)[/tex] when [tex]\(b\)[/tex] is 3 is [tex]\(-1\)[/tex].

So, the final answers are:
- The value of [tex]\(x\)[/tex] in terms of [tex]\(b\)[/tex] is [tex]\(-\frac{3}{b}\)[/tex]
- The value of [tex]\(x\)[/tex] when [tex]\(b\)[/tex] is 3 is [tex]\(-1\)[/tex]