Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how many terms of the arithmetic series [tex]\(32 + 48 + 72 + \ldots\)[/tex] are needed to make the sum 665, let's follow these steps:
### Step 1: Identify the sequence characteristics
The given series is an arithmetic progression (AP) where:
- The first term [tex]\(a = 32\)[/tex]
- The second term is 48, so the common difference [tex]\(d = 48 - 32 = 16\)[/tex]
### Step 2: Use the sum formula of an arithmetic series
The formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic sequence is given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
where:
- [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms
- [tex]\(a\)[/tex] is the first term
- [tex]\(d\)[/tex] is the common difference
- [tex]\(n\)[/tex] is the number of terms
### Step 3: Substitute the known values into the sum formula
We are given that the sum [tex]\(S_n = 665\)[/tex]. So we need:
[tex]\[ 665 = \frac{n}{2} \left(2(32) + (n-1)(16)\right) \][/tex]
### Step 4: Simplify the equation
[tex]\[ 665 = \frac{n}{2} \left(64 + 16n - 16\right) \][/tex]
Simplifying inside the parentheses:
[tex]\[ 665 = \frac{n}{2} \left(48 + 16n\right) \][/tex]
### Step 5: Further simplify and rearrange the equation
[tex]\[ 665 = \frac{n}{2} \times 48 + \frac{n}{2} \times 16n \][/tex]
[tex]\[ 665 = 24n + 8n^2 \][/tex]
### Step 6: Solve the quadratic equation
Now we need to solve the quadratic equation [tex]\(8n^2 + 24n - 665 = 0\)[/tex].
Using the quadratic formula [tex]\(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 8\)[/tex], [tex]\(b = 24\)[/tex], and [tex]\(c = -665\)[/tex]:
[tex]\[ n = \frac{-24 \pm \sqrt{24^2 - 4 \cdot 8 \cdot (-665)}}{2 \cdot 8} \][/tex]
[tex]\[ n = \frac{-24 \pm \sqrt{576 + 21280}}{16} \][/tex]
[tex]\[ n = \frac{-24 \pm \sqrt{21856}}{16} \][/tex]
[tex]\[ \sqrt{21856} = 148 \quad \text{(rounded to 3 decimal places)} \][/tex]
[tex]\[ n = \frac{-24 \pm 148}{16} \][/tex]
### Step 7: Find the possible values for [tex]\(n\)[/tex]
[tex]\[ n_1 = \frac{124}{16} = 7.739 \][/tex]
[tex]\[ n_2 = \frac{-172}{16} = -10.739 \][/tex]
Since [tex]\(n\)[/tex] must be a positive value, we discard the negative solution, leaving:
[tex]\[ n \approx 7.739 \][/tex]
### Step 8: Conclusion
Since the number of terms must be a whole number, we round [tex]\(7.739\)[/tex] to the nearest whole number, giving [tex]\(n = 8\)[/tex]. However, the most accurate answer based on our calculation indicates that slightly fewer than 8 terms would sum to slightly less than 665. Therefore, it is acceptable to recognize that 7 terms are required, but the exact non-integer nature ([tex]\(n \approx 7.739\)[/tex]) indicates a refinement.
Thus, the number of terms required is approximately [tex]\(\boxed{7.739}\)[/tex].
### Step 1: Identify the sequence characteristics
The given series is an arithmetic progression (AP) where:
- The first term [tex]\(a = 32\)[/tex]
- The second term is 48, so the common difference [tex]\(d = 48 - 32 = 16\)[/tex]
### Step 2: Use the sum formula of an arithmetic series
The formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic sequence is given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
where:
- [tex]\(S_n\)[/tex] is the sum of the first [tex]\(n\)[/tex] terms
- [tex]\(a\)[/tex] is the first term
- [tex]\(d\)[/tex] is the common difference
- [tex]\(n\)[/tex] is the number of terms
### Step 3: Substitute the known values into the sum formula
We are given that the sum [tex]\(S_n = 665\)[/tex]. So we need:
[tex]\[ 665 = \frac{n}{2} \left(2(32) + (n-1)(16)\right) \][/tex]
### Step 4: Simplify the equation
[tex]\[ 665 = \frac{n}{2} \left(64 + 16n - 16\right) \][/tex]
Simplifying inside the parentheses:
[tex]\[ 665 = \frac{n}{2} \left(48 + 16n\right) \][/tex]
### Step 5: Further simplify and rearrange the equation
[tex]\[ 665 = \frac{n}{2} \times 48 + \frac{n}{2} \times 16n \][/tex]
[tex]\[ 665 = 24n + 8n^2 \][/tex]
### Step 6: Solve the quadratic equation
Now we need to solve the quadratic equation [tex]\(8n^2 + 24n - 665 = 0\)[/tex].
Using the quadratic formula [tex]\(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 8\)[/tex], [tex]\(b = 24\)[/tex], and [tex]\(c = -665\)[/tex]:
[tex]\[ n = \frac{-24 \pm \sqrt{24^2 - 4 \cdot 8 \cdot (-665)}}{2 \cdot 8} \][/tex]
[tex]\[ n = \frac{-24 \pm \sqrt{576 + 21280}}{16} \][/tex]
[tex]\[ n = \frac{-24 \pm \sqrt{21856}}{16} \][/tex]
[tex]\[ \sqrt{21856} = 148 \quad \text{(rounded to 3 decimal places)} \][/tex]
[tex]\[ n = \frac{-24 \pm 148}{16} \][/tex]
### Step 7: Find the possible values for [tex]\(n\)[/tex]
[tex]\[ n_1 = \frac{124}{16} = 7.739 \][/tex]
[tex]\[ n_2 = \frac{-172}{16} = -10.739 \][/tex]
Since [tex]\(n\)[/tex] must be a positive value, we discard the negative solution, leaving:
[tex]\[ n \approx 7.739 \][/tex]
### Step 8: Conclusion
Since the number of terms must be a whole number, we round [tex]\(7.739\)[/tex] to the nearest whole number, giving [tex]\(n = 8\)[/tex]. However, the most accurate answer based on our calculation indicates that slightly fewer than 8 terms would sum to slightly less than 665. Therefore, it is acceptable to recognize that 7 terms are required, but the exact non-integer nature ([tex]\(n \approx 7.739\)[/tex]) indicates a refinement.
Thus, the number of terms required is approximately [tex]\(\boxed{7.739}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.