Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether the given equation
[tex]\[ 8x^2 - 9y^2 = 1 \][/tex]
defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], let’s follow these steps:
1. Rearrange the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 8x^2 - 1 = 9y^2 \][/tex]
Dividing both sides by 9 gives:
[tex]\[ y^2 = \frac{8x^2 - 1}{9} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex]
2. Analyze the outputs for a given input [tex]\( x \)[/tex]:
The equation [tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex] indicates that for any given [tex]\( x \)[/tex] within the domain where the expression inside the square root is non-negative, there will be two possible values of [tex]\( y \)[/tex]: a positive value and a negative value.
3. Determine if [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex]:
By definition, a function can only have one output for each input. Here, for any [tex]\( x \)[/tex] within the appropriate domain, there are two outputs: [tex]\( \sqrt{\frac{8x^2 - 1}{9}} \)[/tex] and [tex]\( -\sqrt{\frac{8x^2 - 1}{9}} \)[/tex].
Since there are two different [tex]\( y \)[/tex] values for a single [tex]\( x \)[/tex], the equation does not satisfy the requirement of defining [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Therefore, the correct answer is:
D. The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex] because for at least one input value of [tex]\( x \)[/tex], in the domain, the equation yields two different outputs.
[tex]\[ 8x^2 - 9y^2 = 1 \][/tex]
defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], let’s follow these steps:
1. Rearrange the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 8x^2 - 1 = 9y^2 \][/tex]
Dividing both sides by 9 gives:
[tex]\[ y^2 = \frac{8x^2 - 1}{9} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex]
2. Analyze the outputs for a given input [tex]\( x \)[/tex]:
The equation [tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex] indicates that for any given [tex]\( x \)[/tex] within the domain where the expression inside the square root is non-negative, there will be two possible values of [tex]\( y \)[/tex]: a positive value and a negative value.
3. Determine if [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex]:
By definition, a function can only have one output for each input. Here, for any [tex]\( x \)[/tex] within the appropriate domain, there are two outputs: [tex]\( \sqrt{\frac{8x^2 - 1}{9}} \)[/tex] and [tex]\( -\sqrt{\frac{8x^2 - 1}{9}} \)[/tex].
Since there are two different [tex]\( y \)[/tex] values for a single [tex]\( x \)[/tex], the equation does not satisfy the requirement of defining [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Therefore, the correct answer is:
D. The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex] because for at least one input value of [tex]\( x \)[/tex], in the domain, the equation yields two different outputs.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.