Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine whether the given equation
[tex]\[ 8x^2 - 9y^2 = 1 \][/tex]
defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], let’s follow these steps:
1. Rearrange the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 8x^2 - 1 = 9y^2 \][/tex]
Dividing both sides by 9 gives:
[tex]\[ y^2 = \frac{8x^2 - 1}{9} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex]
2. Analyze the outputs for a given input [tex]\( x \)[/tex]:
The equation [tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex] indicates that for any given [tex]\( x \)[/tex] within the domain where the expression inside the square root is non-negative, there will be two possible values of [tex]\( y \)[/tex]: a positive value and a negative value.
3. Determine if [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex]:
By definition, a function can only have one output for each input. Here, for any [tex]\( x \)[/tex] within the appropriate domain, there are two outputs: [tex]\( \sqrt{\frac{8x^2 - 1}{9}} \)[/tex] and [tex]\( -\sqrt{\frac{8x^2 - 1}{9}} \)[/tex].
Since there are two different [tex]\( y \)[/tex] values for a single [tex]\( x \)[/tex], the equation does not satisfy the requirement of defining [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Therefore, the correct answer is:
D. The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex] because for at least one input value of [tex]\( x \)[/tex], in the domain, the equation yields two different outputs.
[tex]\[ 8x^2 - 9y^2 = 1 \][/tex]
defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], let’s follow these steps:
1. Rearrange the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 8x^2 - 1 = 9y^2 \][/tex]
Dividing both sides by 9 gives:
[tex]\[ y^2 = \frac{8x^2 - 1}{9} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex]
2. Analyze the outputs for a given input [tex]\( x \)[/tex]:
The equation [tex]\[ y = \pm \sqrt{\frac{8x^2 - 1}{9}} \][/tex] indicates that for any given [tex]\( x \)[/tex] within the domain where the expression inside the square root is non-negative, there will be two possible values of [tex]\( y \)[/tex]: a positive value and a negative value.
3. Determine if [tex]\( y \)[/tex] is a function of [tex]\( x \)[/tex]:
By definition, a function can only have one output for each input. Here, for any [tex]\( x \)[/tex] within the appropriate domain, there are two outputs: [tex]\( \sqrt{\frac{8x^2 - 1}{9}} \)[/tex] and [tex]\( -\sqrt{\frac{8x^2 - 1}{9}} \)[/tex].
Since there are two different [tex]\( y \)[/tex] values for a single [tex]\( x \)[/tex], the equation does not satisfy the requirement of defining [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Therefore, the correct answer is:
D. The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex] because for at least one input value of [tex]\( x \)[/tex], in the domain, the equation yields two different outputs.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.