Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A bathtub is filling with water at a rate of 72 in³/second. The density of water is 0.58 oz/in³.

How long will it take for the tub to fill with ounces of water? Express your answer to the correct number of significant figures.

It will take ____ seconds.


Sagot :

To determine how long it will take for the bathtub to fill with 58 ounces of water given the data provided, follow these steps:

1. Identify the given rates and target:
- The filling rate of the water is 72 cubic inches per second.
- The density of water is 0.58 ounces per cubic inch.
- The target amount of water to be filled is 58 ounces.

2. Calculate the necessary volume of water to achieve the target weight in ounces:
- Since the density is 0.58 ounces per cubic inch, we use the formula:
[tex]\[ \text{Volume} = \frac{\text{Target weight}}{\text{Density}} \][/tex]
[tex]\[ \text{Volume} = \frac{58 \text{ ounces}}{0.58 \text{ ounces/inch}^3} \][/tex]
- This yields a volume of 100.0 cubic inches.

3. Calculate the time needed to fill this volume of water:
- Given the filling rate, we use the formula:
[tex]\[ \text{Time} = \frac{\text{Volume}}{\text{Filling rate}} \][/tex]
[tex]\[ \text{Time} = \frac{100.0 \text{ inch}^3}{72 \text{ inch}^3/\text{second}} \][/tex]
- This results in approximately 1.39 seconds.

Therefore, it will take approximately 1.39 seconds to fill the bathtub with 58 ounces of water.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.