Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the value of [tex]\(\tan 60^\circ\)[/tex], let's analyze this trigonometric function for the given angle.
We know from trigonometry that tangent of an angle in a right triangle is defined as the ratio of the opposite side to the adjacent side, i.e.,
[tex]\[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
For the angle [tex]\(60^\circ\)[/tex], which is a standard angle, its tangent value is commonly derived from the properties of a 30-60-90 triangle. In a 30-60-90 triangle, the sides are in the ratio of:
[tex]\[ 1 : \sqrt{3} : 2 \][/tex]
Specifically:
- The side opposite the 30° angle is [tex]\(1\)[/tex].
- The side opposite the 60° angle is [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse is [tex]\(2\)[/tex].
Thus, for [tex]\(\tan 60^\circ\)[/tex], where the angle is 60°:
[tex]\[ \tan 60^\circ = \frac{\text{opposite to 60°}}{\text{adjacent to 60°}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
We now compare this value with the options given:
A. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
B. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
C. [tex]\(\frac{1}{2}\)[/tex]
D. 1
E. [tex]\(\frac{2}{\sqrt{3}}\)[/tex]
F. [tex]\(\sqrt{3}\)[/tex]
The correct choice is [tex]\(\sqrt{3}\)[/tex], which corresponds to:
F. [tex]\(\sqrt{3}\)[/tex]
So, the value of [tex]\(\tan 60^\circ\)[/tex] is [tex]\(\sqrt{3}\)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{F} \][/tex]
We know from trigonometry that tangent of an angle in a right triangle is defined as the ratio of the opposite side to the adjacent side, i.e.,
[tex]\[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
For the angle [tex]\(60^\circ\)[/tex], which is a standard angle, its tangent value is commonly derived from the properties of a 30-60-90 triangle. In a 30-60-90 triangle, the sides are in the ratio of:
[tex]\[ 1 : \sqrt{3} : 2 \][/tex]
Specifically:
- The side opposite the 30° angle is [tex]\(1\)[/tex].
- The side opposite the 60° angle is [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse is [tex]\(2\)[/tex].
Thus, for [tex]\(\tan 60^\circ\)[/tex], where the angle is 60°:
[tex]\[ \tan 60^\circ = \frac{\text{opposite to 60°}}{\text{adjacent to 60°}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
We now compare this value with the options given:
A. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
B. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
C. [tex]\(\frac{1}{2}\)[/tex]
D. 1
E. [tex]\(\frac{2}{\sqrt{3}}\)[/tex]
F. [tex]\(\sqrt{3}\)[/tex]
The correct choice is [tex]\(\sqrt{3}\)[/tex], which corresponds to:
F. [tex]\(\sqrt{3}\)[/tex]
So, the value of [tex]\(\tan 60^\circ\)[/tex] is [tex]\(\sqrt{3}\)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{F} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.