Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\(\sin 30^\circ\)[/tex], we need to recall some key properties of trigonometric functions and specific angles.
The sine function for common angles is often memorized or derived through knowledge of the unit circle or special triangles.
For the angle [tex]\(30^\circ\)[/tex]:
1. Unit Circle Approach: On the unit circle, [tex]\(30^\circ\)[/tex] corresponds to the point [tex]\( \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \)[/tex]. Here, the y-coordinate gives the value of [tex]\(\sin 30^\circ\)[/tex].
2. Special Triangle Approach: Another method involves the 30-60-90 special right triangle. In this triangle, the sides have fixed ratios relative to each other. Specifically:
- The side opposite to the [tex]\(30^\circ\)[/tex] angle (the shorter leg) is [tex]\( \frac{1}{2} \)[/tex].
- The side opposite to the [tex]\(60^\circ\)[/tex] angle (the longer leg) is [tex]\( \frac{\sqrt{3}}{2} \)[/tex].
- The hypotenuse is 1.
Given this information, the value of [tex]\(\sin 30^\circ\)[/tex] is the ratio of the length of the side opposite [tex]\(30^\circ\)[/tex] to the hypotenuse:
[tex]\[ \sin 30^\circ = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2} \][/tex]
Therefore, the correct answer is:
F. [tex]\(\frac{1}{2}\)[/tex]
The sine function for common angles is often memorized or derived through knowledge of the unit circle or special triangles.
For the angle [tex]\(30^\circ\)[/tex]:
1. Unit Circle Approach: On the unit circle, [tex]\(30^\circ\)[/tex] corresponds to the point [tex]\( \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \)[/tex]. Here, the y-coordinate gives the value of [tex]\(\sin 30^\circ\)[/tex].
2. Special Triangle Approach: Another method involves the 30-60-90 special right triangle. In this triangle, the sides have fixed ratios relative to each other. Specifically:
- The side opposite to the [tex]\(30^\circ\)[/tex] angle (the shorter leg) is [tex]\( \frac{1}{2} \)[/tex].
- The side opposite to the [tex]\(60^\circ\)[/tex] angle (the longer leg) is [tex]\( \frac{\sqrt{3}}{2} \)[/tex].
- The hypotenuse is 1.
Given this information, the value of [tex]\(\sin 30^\circ\)[/tex] is the ratio of the length of the side opposite [tex]\(30^\circ\)[/tex] to the hypotenuse:
[tex]\[ \sin 30^\circ = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2} \][/tex]
Therefore, the correct answer is:
F. [tex]\(\frac{1}{2}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.