Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If [tex]\(\theta\)[/tex] is an angle in standard position whose terminal side passes through the point [tex]\((-2, -3)\)[/tex], what is the numerical value of [tex]\(\tan \theta\)[/tex]?

A. [tex]\(\frac{2}{3}\)[/tex]
B. [tex]\(\frac{3}{2}\)[/tex]
C. [tex]\(-\frac{2}{\sqrt{13}}\)[/tex]
D. [tex]\(-\frac{3}{\sqrt{13}}\)[/tex]

Sagot :

To find the value of [tex]\(\tan \theta\)[/tex] for an angle [tex]\(\theta\)[/tex] in standard position passing through the point [tex]\((-2, -3)\)[/tex], we use the definition of the tangent function in a coordinate plane. The tangent of an angle [tex]\(\theta\)[/tex] (formed by the terminal side and the x-axis) is given by [tex]\(\tan \theta = \frac{y}{x}\)[/tex], where [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are the coordinates of the point on the terminal side.

Let's apply this to the given point [tex]\((-2, -3)\)[/tex]:

1. Identify the coordinates: the point is [tex]\((x, y) = (-2, -3)\)[/tex].
2. Substitute these coordinates into the tangent formula:
[tex]\[ \tan \theta = \frac{y}{x} \][/tex]
3. Plug in the values [tex]\(x = -2\)[/tex] and [tex]\(y = -3\)[/tex]:
[tex]\[ \tan \theta = \frac{-3}{-2} \][/tex]
4. Simplify the expression:
[tex]\[ \tan \theta = \frac{-3}{-2} = \frac{3}{2} \][/tex]

Thus, the numerical value of [tex]\(\tan \theta\)[/tex] is [tex]\(\frac{3}{2}\)[/tex].

Therefore, the correct answer is:
(2) [tex]\(\frac{3}{2}\)[/tex]