Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to apply the triangle inequality theorem. This theorem states that for any triangle, the sum of any two sides must be greater than the length of the third side.
Let's denote the sides of the triangle as follows:
- [tex]$a = 20 \, \text{m}$[/tex]
- [tex]$b = 30 \, \text{m}$[/tex]
- [tex]$x$[/tex] is the unknown third side.
According to the triangle inequality theorem, we have three conditions that must be satisfied:
1. [tex]\( a + b > x \)[/tex]
2. [tex]\( a + x > b \)[/tex]
3. [tex]\( b + x > a \)[/tex]
Substituting the known values:
1. [tex]\( 20 + 30 > x \)[/tex]
[tex]\[ 50 > x \][/tex]
[tex]\[ x < 50 \][/tex]
2. [tex]\( 20 + x > 30 \)[/tex]
[tex]\[ x > 10 \][/tex]
3. [tex]\( 30 + x > 20 \)[/tex]
[tex]\[ x > -10 \][/tex]
The third condition, [tex]\( x > -10 \)[/tex], is always true for positive lengths of [tex]\( x \)[/tex], so it is redundant in this context. Therefore, we consider only the effective constraints:
[tex]\[ 10 < x < 50 \][/tex]
Hence, the range of possible lengths for the third side [tex]\( x \)[/tex] of the restaurant is:
[tex]\[ 10 < x < 50 \][/tex]
So the correct answer to fill in the blanks is:
[tex]\[ \boxed{10} < x < \boxed{50} \][/tex]
Let's denote the sides of the triangle as follows:
- [tex]$a = 20 \, \text{m}$[/tex]
- [tex]$b = 30 \, \text{m}$[/tex]
- [tex]$x$[/tex] is the unknown third side.
According to the triangle inequality theorem, we have three conditions that must be satisfied:
1. [tex]\( a + b > x \)[/tex]
2. [tex]\( a + x > b \)[/tex]
3. [tex]\( b + x > a \)[/tex]
Substituting the known values:
1. [tex]\( 20 + 30 > x \)[/tex]
[tex]\[ 50 > x \][/tex]
[tex]\[ x < 50 \][/tex]
2. [tex]\( 20 + x > 30 \)[/tex]
[tex]\[ x > 10 \][/tex]
3. [tex]\( 30 + x > 20 \)[/tex]
[tex]\[ x > -10 \][/tex]
The third condition, [tex]\( x > -10 \)[/tex], is always true for positive lengths of [tex]\( x \)[/tex], so it is redundant in this context. Therefore, we consider only the effective constraints:
[tex]\[ 10 < x < 50 \][/tex]
Hence, the range of possible lengths for the third side [tex]\( x \)[/tex] of the restaurant is:
[tex]\[ 10 < x < 50 \][/tex]
So the correct answer to fill in the blanks is:
[tex]\[ \boxed{10} < x < \boxed{50} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.