At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To identify the type of function represented by [tex]\( f(x) = 4 \cdot 2^x \)[/tex], let's analyze the function step-by-step.
1. Form of the Function:
- The given function is [tex]\( f(x) = 4 \cdot 2^x \)[/tex].
- This is in the form of [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( x \)[/tex] is the variable.
2. Identifying Exponential Functions:
- Functions of the form [tex]\( f(x) = a \cdot b^x \)[/tex] are classified as exponential functions.
- If [tex]\( b > 1 \)[/tex], the function represents exponential growth.
- If [tex]\( 0 < b < 1 \)[/tex], the function represents exponential decay.
- In our function, [tex]\( a = 4 \)[/tex] and [tex]\( b = 2 \)[/tex].
3. Analyzing the Base (b):
- Here, [tex]\( b = 2 \)[/tex].
- Since [tex]\( 2 > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] represents exponential growth.
4. Conclusion:
- Based on the condition that [tex]\( b > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] must be classified as an exponential growth function.
Therefore, the correct answer is:
D. Exponential growth
1. Form of the Function:
- The given function is [tex]\( f(x) = 4 \cdot 2^x \)[/tex].
- This is in the form of [tex]\( f(x) = a \cdot b^x \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( x \)[/tex] is the variable.
2. Identifying Exponential Functions:
- Functions of the form [tex]\( f(x) = a \cdot b^x \)[/tex] are classified as exponential functions.
- If [tex]\( b > 1 \)[/tex], the function represents exponential growth.
- If [tex]\( 0 < b < 1 \)[/tex], the function represents exponential decay.
- In our function, [tex]\( a = 4 \)[/tex] and [tex]\( b = 2 \)[/tex].
3. Analyzing the Base (b):
- Here, [tex]\( b = 2 \)[/tex].
- Since [tex]\( 2 > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] represents exponential growth.
4. Conclusion:
- Based on the condition that [tex]\( b > 1 \)[/tex], the function [tex]\( f(x) = 4 \cdot 2^x \)[/tex] must be classified as an exponential growth function.
Therefore, the correct answer is:
D. Exponential growth
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.