Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, I can guide you through the process step-by-step.
First, we start with the function [tex]\( y = \tan(4x + 4) \)[/tex].
To find the differential [tex]\( dy \)[/tex], we need to determine the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], which is denoted as [tex]\( \frac{dy}{dx} \)[/tex]. This requires us to apply the chain rule.
Step-by-Step Solution:
1. Differentiate [tex]\( y = \tan(4x + 4) \)[/tex]:
Let [tex]\( u = 4x + 4 \)[/tex]. Then, [tex]\( y = \tan(u) \)[/tex].
The derivative of [tex]\( \tan(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \sec^2(u) \)[/tex], and the derivative of [tex]\( u = 4x + 4 \)[/tex] with respect to [tex]\( x \)[/tex] is 4. Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d(\tan(u))}{du} \cdot \frac{du}{dx} = \sec^2(u) \cdot 4 \][/tex]
Substitute [tex]\( u = 4x + 4 \)[/tex]:
[tex]\[ \frac{dy}{dx} = 4 \sec^2(4x + 4) \][/tex]
2. Evaluate [tex]\( \frac{dy}{dx} \)[/tex] at [tex]\( x = 4 \)[/tex]:
Substitute [tex]\( x = 4 \)[/tex] into [tex]\( u \)[/tex]:
[tex]\[ u = 4(4) + 4 = 16 + 4 = 20 \][/tex]
So,
[tex]\[ \frac{dy}{dx} \Big|_{x=4} = 4 \sec^2(20) \][/tex]
3. Calculate [tex]\( dy \)[/tex] for [tex]\( dx = 0.4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex]:
The differential [tex]\( dy \)[/tex] can be found using [tex]\( dy = \frac{dy}{dx} \cdot dx \)[/tex].
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.4} = \left( 4 \sec^2(20) \right) \cdot 0.4 \approx 9.6078 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.8} = \left( 4 \sec^2(20) \right) \cdot 0.8 \approx 19.2156 \][/tex]
Summarizing the results:
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex] is approximately [tex]\( 9.6078 \)[/tex].
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex] is approximately [tex]\( 19.2156 \)[/tex].
Thus, these are the final differentials for the given values of [tex]\( dx \)[/tex].
First, we start with the function [tex]\( y = \tan(4x + 4) \)[/tex].
To find the differential [tex]\( dy \)[/tex], we need to determine the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], which is denoted as [tex]\( \frac{dy}{dx} \)[/tex]. This requires us to apply the chain rule.
Step-by-Step Solution:
1. Differentiate [tex]\( y = \tan(4x + 4) \)[/tex]:
Let [tex]\( u = 4x + 4 \)[/tex]. Then, [tex]\( y = \tan(u) \)[/tex].
The derivative of [tex]\( \tan(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \sec^2(u) \)[/tex], and the derivative of [tex]\( u = 4x + 4 \)[/tex] with respect to [tex]\( x \)[/tex] is 4. Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d(\tan(u))}{du} \cdot \frac{du}{dx} = \sec^2(u) \cdot 4 \][/tex]
Substitute [tex]\( u = 4x + 4 \)[/tex]:
[tex]\[ \frac{dy}{dx} = 4 \sec^2(4x + 4) \][/tex]
2. Evaluate [tex]\( \frac{dy}{dx} \)[/tex] at [tex]\( x = 4 \)[/tex]:
Substitute [tex]\( x = 4 \)[/tex] into [tex]\( u \)[/tex]:
[tex]\[ u = 4(4) + 4 = 16 + 4 = 20 \][/tex]
So,
[tex]\[ \frac{dy}{dx} \Big|_{x=4} = 4 \sec^2(20) \][/tex]
3. Calculate [tex]\( dy \)[/tex] for [tex]\( dx = 0.4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex]:
The differential [tex]\( dy \)[/tex] can be found using [tex]\( dy = \frac{dy}{dx} \cdot dx \)[/tex].
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.4} = \left( 4 \sec^2(20) \right) \cdot 0.4 \approx 9.6078 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.8} = \left( 4 \sec^2(20) \right) \cdot 0.8 \approx 19.2156 \][/tex]
Summarizing the results:
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex] is approximately [tex]\( 9.6078 \)[/tex].
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex] is approximately [tex]\( 19.2156 \)[/tex].
Thus, these are the final differentials for the given values of [tex]\( dx \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.