Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, I can guide you through the process step-by-step.
First, we start with the function [tex]\( y = \tan(4x + 4) \)[/tex].
To find the differential [tex]\( dy \)[/tex], we need to determine the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], which is denoted as [tex]\( \frac{dy}{dx} \)[/tex]. This requires us to apply the chain rule.
Step-by-Step Solution:
1. Differentiate [tex]\( y = \tan(4x + 4) \)[/tex]:
Let [tex]\( u = 4x + 4 \)[/tex]. Then, [tex]\( y = \tan(u) \)[/tex].
The derivative of [tex]\( \tan(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \sec^2(u) \)[/tex], and the derivative of [tex]\( u = 4x + 4 \)[/tex] with respect to [tex]\( x \)[/tex] is 4. Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d(\tan(u))}{du} \cdot \frac{du}{dx} = \sec^2(u) \cdot 4 \][/tex]
Substitute [tex]\( u = 4x + 4 \)[/tex]:
[tex]\[ \frac{dy}{dx} = 4 \sec^2(4x + 4) \][/tex]
2. Evaluate [tex]\( \frac{dy}{dx} \)[/tex] at [tex]\( x = 4 \)[/tex]:
Substitute [tex]\( x = 4 \)[/tex] into [tex]\( u \)[/tex]:
[tex]\[ u = 4(4) + 4 = 16 + 4 = 20 \][/tex]
So,
[tex]\[ \frac{dy}{dx} \Big|_{x=4} = 4 \sec^2(20) \][/tex]
3. Calculate [tex]\( dy \)[/tex] for [tex]\( dx = 0.4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex]:
The differential [tex]\( dy \)[/tex] can be found using [tex]\( dy = \frac{dy}{dx} \cdot dx \)[/tex].
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.4} = \left( 4 \sec^2(20) \right) \cdot 0.4 \approx 9.6078 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.8} = \left( 4 \sec^2(20) \right) \cdot 0.8 \approx 19.2156 \][/tex]
Summarizing the results:
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex] is approximately [tex]\( 9.6078 \)[/tex].
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex] is approximately [tex]\( 19.2156 \)[/tex].
Thus, these are the final differentials for the given values of [tex]\( dx \)[/tex].
First, we start with the function [tex]\( y = \tan(4x + 4) \)[/tex].
To find the differential [tex]\( dy \)[/tex], we need to determine the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], which is denoted as [tex]\( \frac{dy}{dx} \)[/tex]. This requires us to apply the chain rule.
Step-by-Step Solution:
1. Differentiate [tex]\( y = \tan(4x + 4) \)[/tex]:
Let [tex]\( u = 4x + 4 \)[/tex]. Then, [tex]\( y = \tan(u) \)[/tex].
The derivative of [tex]\( \tan(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \sec^2(u) \)[/tex], and the derivative of [tex]\( u = 4x + 4 \)[/tex] with respect to [tex]\( x \)[/tex] is 4. Using the chain rule:
[tex]\[ \frac{dy}{dx} = \frac{d(\tan(u))}{du} \cdot \frac{du}{dx} = \sec^2(u) \cdot 4 \][/tex]
Substitute [tex]\( u = 4x + 4 \)[/tex]:
[tex]\[ \frac{dy}{dx} = 4 \sec^2(4x + 4) \][/tex]
2. Evaluate [tex]\( \frac{dy}{dx} \)[/tex] at [tex]\( x = 4 \)[/tex]:
Substitute [tex]\( x = 4 \)[/tex] into [tex]\( u \)[/tex]:
[tex]\[ u = 4(4) + 4 = 16 + 4 = 20 \][/tex]
So,
[tex]\[ \frac{dy}{dx} \Big|_{x=4} = 4 \sec^2(20) \][/tex]
3. Calculate [tex]\( dy \)[/tex] for [tex]\( dx = 0.4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex]:
The differential [tex]\( dy \)[/tex] can be found using [tex]\( dy = \frac{dy}{dx} \cdot dx \)[/tex].
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.4} = \left( 4 \sec^2(20) \right) \cdot 0.4 \approx 9.6078 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \Big|_{x=4, \, dx=0.8} = \left( 4 \sec^2(20) \right) \cdot 0.8 \approx 19.2156 \][/tex]
Summarizing the results:
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex] is approximately [tex]\( 9.6078 \)[/tex].
- The differential [tex]\( dy \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex] is approximately [tex]\( 19.2156 \)[/tex].
Thus, these are the final differentials for the given values of [tex]\( dx \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.