Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's solve this step-by-step.
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2 + 3\text{H}_2 \leftrightarrow 2\text{NH}_3 \][/tex]
The equilibrium constant expression for this reaction [tex]\( K_{eq} \)[/tex] is defined as:
[tex]\[ K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] \cdot [\text{H}_2]^3} \][/tex]
We are given the following equilibrium concentrations:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
Now, let's substitute these concentrations into the equilibrium constant expression:
[tex]\[ K_{eq} = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
First, calculate the numerator:
[tex]\[ (0.105)^2 = 0.011025 \][/tex]
Next, calculate the denominator:
[tex]\[ (1.50)^3 = 1.50 \times 1.50 \times 1.50 = 3.375 \][/tex]
[tex]\[ 1.1 \times 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_{eq} = \frac{0.011025}{3.7125} \approx 0.002969696969696969 \][/tex]
Looking at the provided choices, the closest value to our calculation is [tex]\( 0.0030 \)[/tex].
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction at this temperature is:
[tex]\[ \boxed{0.0030} \][/tex]
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2 + 3\text{H}_2 \leftrightarrow 2\text{NH}_3 \][/tex]
The equilibrium constant expression for this reaction [tex]\( K_{eq} \)[/tex] is defined as:
[tex]\[ K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] \cdot [\text{H}_2]^3} \][/tex]
We are given the following equilibrium concentrations:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
Now, let's substitute these concentrations into the equilibrium constant expression:
[tex]\[ K_{eq} = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
First, calculate the numerator:
[tex]\[ (0.105)^2 = 0.011025 \][/tex]
Next, calculate the denominator:
[tex]\[ (1.50)^3 = 1.50 \times 1.50 \times 1.50 = 3.375 \][/tex]
[tex]\[ 1.1 \times 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_{eq} = \frac{0.011025}{3.7125} \approx 0.002969696969696969 \][/tex]
Looking at the provided choices, the closest value to our calculation is [tex]\( 0.0030 \)[/tex].
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction at this temperature is:
[tex]\[ \boxed{0.0030} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.