At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve this step-by-step.
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2 + 3\text{H}_2 \leftrightarrow 2\text{NH}_3 \][/tex]
The equilibrium constant expression for this reaction [tex]\( K_{eq} \)[/tex] is defined as:
[tex]\[ K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] \cdot [\text{H}_2]^3} \][/tex]
We are given the following equilibrium concentrations:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
Now, let's substitute these concentrations into the equilibrium constant expression:
[tex]\[ K_{eq} = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
First, calculate the numerator:
[tex]\[ (0.105)^2 = 0.011025 \][/tex]
Next, calculate the denominator:
[tex]\[ (1.50)^3 = 1.50 \times 1.50 \times 1.50 = 3.375 \][/tex]
[tex]\[ 1.1 \times 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_{eq} = \frac{0.011025}{3.7125} \approx 0.002969696969696969 \][/tex]
Looking at the provided choices, the closest value to our calculation is [tex]\( 0.0030 \)[/tex].
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction at this temperature is:
[tex]\[ \boxed{0.0030} \][/tex]
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2 + 3\text{H}_2 \leftrightarrow 2\text{NH}_3 \][/tex]
The equilibrium constant expression for this reaction [tex]\( K_{eq} \)[/tex] is defined as:
[tex]\[ K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] \cdot [\text{H}_2]^3} \][/tex]
We are given the following equilibrium concentrations:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
Now, let's substitute these concentrations into the equilibrium constant expression:
[tex]\[ K_{eq} = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
First, calculate the numerator:
[tex]\[ (0.105)^2 = 0.011025 \][/tex]
Next, calculate the denominator:
[tex]\[ (1.50)^3 = 1.50 \times 1.50 \times 1.50 = 3.375 \][/tex]
[tex]\[ 1.1 \times 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_{eq} = \frac{0.011025}{3.7125} \approx 0.002969696969696969 \][/tex]
Looking at the provided choices, the closest value to our calculation is [tex]\( 0.0030 \)[/tex].
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction at this temperature is:
[tex]\[ \boxed{0.0030} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.