Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's work through this problem step-by-step:
1. Given Function:
[tex]\[ y = 2x^2 + 2x + 2 \][/tex]
2. Finding the Derivative:
To find the differential [tex]\( dy \)[/tex], we first need to determine the derivative of the given function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]. The derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 2x + 2) \][/tex]
Applying basic differentiation rules, we get:
[tex]\[ \frac{dy}{dx} = 4x + 2 \][/tex]
3. Evaluate the Derivative at [tex]\( x = 4 \)[/tex]:
Next, we substitute [tex]\( x = 4 \)[/tex] into the derivative to find the slope of the tangent line at that point:
[tex]\[ \frac{dy}{dx} \bigg|_{x=4} = 4(4) + 2 = 16 + 2 = 18 \][/tex]
4. Calculate [tex]\( dy \)[/tex] using the Differential Approximation [tex]\( dy \approx \frac{dy}{dx} \cdot dx \)[/tex]:
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.4 = 7.2 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.8 = 14.4 \][/tex]
5. Summary of the Results:
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 7.2 \][/tex]
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 14.4 \][/tex]
Thus, we have found the required differentials for the given conditions.
1. Given Function:
[tex]\[ y = 2x^2 + 2x + 2 \][/tex]
2. Finding the Derivative:
To find the differential [tex]\( dy \)[/tex], we first need to determine the derivative of the given function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]. The derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 2x + 2) \][/tex]
Applying basic differentiation rules, we get:
[tex]\[ \frac{dy}{dx} = 4x + 2 \][/tex]
3. Evaluate the Derivative at [tex]\( x = 4 \)[/tex]:
Next, we substitute [tex]\( x = 4 \)[/tex] into the derivative to find the slope of the tangent line at that point:
[tex]\[ \frac{dy}{dx} \bigg|_{x=4} = 4(4) + 2 = 16 + 2 = 18 \][/tex]
4. Calculate [tex]\( dy \)[/tex] using the Differential Approximation [tex]\( dy \approx \frac{dy}{dx} \cdot dx \)[/tex]:
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.4 = 7.2 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.8 = 14.4 \][/tex]
5. Summary of the Results:
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 7.2 \][/tex]
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 14.4 \][/tex]
Thus, we have found the required differentials for the given conditions.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.