Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's work through this problem step-by-step:
1. Given Function:
[tex]\[ y = 2x^2 + 2x + 2 \][/tex]
2. Finding the Derivative:
To find the differential [tex]\( dy \)[/tex], we first need to determine the derivative of the given function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]. The derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 2x + 2) \][/tex]
Applying basic differentiation rules, we get:
[tex]\[ \frac{dy}{dx} = 4x + 2 \][/tex]
3. Evaluate the Derivative at [tex]\( x = 4 \)[/tex]:
Next, we substitute [tex]\( x = 4 \)[/tex] into the derivative to find the slope of the tangent line at that point:
[tex]\[ \frac{dy}{dx} \bigg|_{x=4} = 4(4) + 2 = 16 + 2 = 18 \][/tex]
4. Calculate [tex]\( dy \)[/tex] using the Differential Approximation [tex]\( dy \approx \frac{dy}{dx} \cdot dx \)[/tex]:
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.4 = 7.2 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.8 = 14.4 \][/tex]
5. Summary of the Results:
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 7.2 \][/tex]
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 14.4 \][/tex]
Thus, we have found the required differentials for the given conditions.
1. Given Function:
[tex]\[ y = 2x^2 + 2x + 2 \][/tex]
2. Finding the Derivative:
To find the differential [tex]\( dy \)[/tex], we first need to determine the derivative of the given function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]. The derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 2x + 2) \][/tex]
Applying basic differentiation rules, we get:
[tex]\[ \frac{dy}{dx} = 4x + 2 \][/tex]
3. Evaluate the Derivative at [tex]\( x = 4 \)[/tex]:
Next, we substitute [tex]\( x = 4 \)[/tex] into the derivative to find the slope of the tangent line at that point:
[tex]\[ \frac{dy}{dx} \bigg|_{x=4} = 4(4) + 2 = 16 + 2 = 18 \][/tex]
4. Calculate [tex]\( dy \)[/tex] using the Differential Approximation [tex]\( dy \approx \frac{dy}{dx} \cdot dx \)[/tex]:
- For [tex]\( dx = 0.4 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.4 = 7.2 \][/tex]
- For [tex]\( dx = 0.8 \)[/tex]:
[tex]\[ dy \approx \frac{dy}{dx} \cdot dx = 18 \cdot 0.8 = 14.4 \][/tex]
5. Summary of the Results:
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.4 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 7.2 \][/tex]
- When [tex]\( x = 4 \)[/tex] and [tex]\( dx = 0.8 \)[/tex], the differential [tex]\( dy \)[/tex] is:
[tex]\[ dy = 14.4 \][/tex]
Thus, we have found the required differentials for the given conditions.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.