Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], let's go through the necessary steps:
### Domain:
The domain of a function is the set of all possible input values (x-values) that the function can accept.
1. In the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], the expression [tex]\( 5^{x-3} \)[/tex] is an exponential function.
2. Exponential functions are defined for all real numbers because you can raise 5 to any real number power.
3. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
So, the domain of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the expression [tex]\( 5^{x-3} \)[/tex]. For any real number [tex]\( x \)[/tex], [tex]\( 5^{x-3} \)[/tex] is always positive because the base 5 is positive and any positive number raised to any power (positive or negative) will also be positive.
2. The smallest value that [tex]\( 5^{x-3} \)[/tex] can approach is 0, but it will never actually reach 0. Thus, [tex]\( 5^{x-3} > 0 \)[/tex].
3. By adding 1 to [tex]\( 5^{x-3} \)[/tex], you shift this entire function up by 1.
4. So now, instead of [tex]\( 5^{x-3} \)[/tex] being greater than 0, [tex]\( 5^{x-3} + 1 \)[/tex] will always be greater than 1.
Therefore, the range of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Range} = \text{all real numbers greater than 1} \][/tex]
To summarize, the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] are:
- Domain: All real numbers
- Range: All real numbers greater than 1
### Domain:
The domain of a function is the set of all possible input values (x-values) that the function can accept.
1. In the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], the expression [tex]\( 5^{x-3} \)[/tex] is an exponential function.
2. Exponential functions are defined for all real numbers because you can raise 5 to any real number power.
3. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
So, the domain of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the expression [tex]\( 5^{x-3} \)[/tex]. For any real number [tex]\( x \)[/tex], [tex]\( 5^{x-3} \)[/tex] is always positive because the base 5 is positive and any positive number raised to any power (positive or negative) will also be positive.
2. The smallest value that [tex]\( 5^{x-3} \)[/tex] can approach is 0, but it will never actually reach 0. Thus, [tex]\( 5^{x-3} > 0 \)[/tex].
3. By adding 1 to [tex]\( 5^{x-3} \)[/tex], you shift this entire function up by 1.
4. So now, instead of [tex]\( 5^{x-3} \)[/tex] being greater than 0, [tex]\( 5^{x-3} + 1 \)[/tex] will always be greater than 1.
Therefore, the range of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Range} = \text{all real numbers greater than 1} \][/tex]
To summarize, the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] are:
- Domain: All real numbers
- Range: All real numbers greater than 1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.