Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], let's go through the necessary steps:
### Domain:
The domain of a function is the set of all possible input values (x-values) that the function can accept.
1. In the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], the expression [tex]\( 5^{x-3} \)[/tex] is an exponential function.
2. Exponential functions are defined for all real numbers because you can raise 5 to any real number power.
3. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
So, the domain of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the expression [tex]\( 5^{x-3} \)[/tex]. For any real number [tex]\( x \)[/tex], [tex]\( 5^{x-3} \)[/tex] is always positive because the base 5 is positive and any positive number raised to any power (positive or negative) will also be positive.
2. The smallest value that [tex]\( 5^{x-3} \)[/tex] can approach is 0, but it will never actually reach 0. Thus, [tex]\( 5^{x-3} > 0 \)[/tex].
3. By adding 1 to [tex]\( 5^{x-3} \)[/tex], you shift this entire function up by 1.
4. So now, instead of [tex]\( 5^{x-3} \)[/tex] being greater than 0, [tex]\( 5^{x-3} + 1 \)[/tex] will always be greater than 1.
Therefore, the range of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Range} = \text{all real numbers greater than 1} \][/tex]
To summarize, the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] are:
- Domain: All real numbers
- Range: All real numbers greater than 1
### Domain:
The domain of a function is the set of all possible input values (x-values) that the function can accept.
1. In the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex], the expression [tex]\( 5^{x-3} \)[/tex] is an exponential function.
2. Exponential functions are defined for all real numbers because you can raise 5 to any real number power.
3. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
So, the domain of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the expression [tex]\( 5^{x-3} \)[/tex]. For any real number [tex]\( x \)[/tex], [tex]\( 5^{x-3} \)[/tex] is always positive because the base 5 is positive and any positive number raised to any power (positive or negative) will also be positive.
2. The smallest value that [tex]\( 5^{x-3} \)[/tex] can approach is 0, but it will never actually reach 0. Thus, [tex]\( 5^{x-3} > 0 \)[/tex].
3. By adding 1 to [tex]\( 5^{x-3} \)[/tex], you shift this entire function up by 1.
4. So now, instead of [tex]\( 5^{x-3} \)[/tex] being greater than 0, [tex]\( 5^{x-3} + 1 \)[/tex] will always be greater than 1.
Therefore, the range of [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] is:
[tex]\[ \text{Range} = \text{all real numbers greater than 1} \][/tex]
To summarize, the domain and range of the function [tex]\( f(x) = 5^{x-3} + 1 \)[/tex] are:
- Domain: All real numbers
- Range: All real numbers greater than 1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.