At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for [tex]\( y \)[/tex] given the conditions, we need to follow the steps for dealing with direct variation. Here's the step-by-step process:
1. Understand Direct Variation:
If [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], it means [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is the constant of variation.
2. Find the Constant of Variation (k):
We are given that [tex]\( y = 13 \)[/tex] when [tex]\( x = 27 \)[/tex]. Substitute these values into the direct variation formula to determine [tex]\( k \)[/tex]:
[tex]\[ 13 = k \cdot 27 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{13}{27} \][/tex]
3. Find the New Value of y:
Now, we're asked to find [tex]\( y \)[/tex] when [tex]\( x = 44 \)[/tex]. Use the constant [tex]\( k \)[/tex] and substitute [tex]\( x = 44 \)[/tex] back into the direct variation equation:
[tex]\[ y = k \cdot 44 \][/tex]
Substituting the value of [tex]\( k \)[/tex]:
[tex]\[ y = \left(\frac{13}{27}\right) \cdot 44 \][/tex]
Calculating [tex]\( y \)[/tex] gives us:
[tex]\[ y \approx 21.185185185185183 \][/tex]
4. Round the Answer:
Finally, we need to round [tex]\( y \)[/tex] to the nearest hundredth. Rounding [tex]\( 21.185185185185183 \)[/tex] to two decimal places:
[tex]\[ y \approx 21.19 \][/tex]
Thus, when [tex]\( x = 44 \)[/tex], the value of [tex]\( y \)[/tex] is:
[tex]\[ y \approx 21.19 \][/tex]
1. Understand Direct Variation:
If [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], it means [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is the constant of variation.
2. Find the Constant of Variation (k):
We are given that [tex]\( y = 13 \)[/tex] when [tex]\( x = 27 \)[/tex]. Substitute these values into the direct variation formula to determine [tex]\( k \)[/tex]:
[tex]\[ 13 = k \cdot 27 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{13}{27} \][/tex]
3. Find the New Value of y:
Now, we're asked to find [tex]\( y \)[/tex] when [tex]\( x = 44 \)[/tex]. Use the constant [tex]\( k \)[/tex] and substitute [tex]\( x = 44 \)[/tex] back into the direct variation equation:
[tex]\[ y = k \cdot 44 \][/tex]
Substituting the value of [tex]\( k \)[/tex]:
[tex]\[ y = \left(\frac{13}{27}\right) \cdot 44 \][/tex]
Calculating [tex]\( y \)[/tex] gives us:
[tex]\[ y \approx 21.185185185185183 \][/tex]
4. Round the Answer:
Finally, we need to round [tex]\( y \)[/tex] to the nearest hundredth. Rounding [tex]\( 21.185185185185183 \)[/tex] to two decimal places:
[tex]\[ y \approx 21.19 \][/tex]
Thus, when [tex]\( x = 44 \)[/tex], the value of [tex]\( y \)[/tex] is:
[tex]\[ y \approx 21.19 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.