Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the situation step-by-step:
1. Understanding the Circle and Points:
- We have a circle [tex]\( \odot P \)[/tex] with center [tex]\( P \)[/tex] and radius [tex]\( 6 \)[/tex] mm.
- Point [tex]\( A \)[/tex] is given such that [tex]\( AP = 6 \)[/tex] mm. This implies point [tex]\( A \)[/tex] is on the circle since the distance [tex]\( AP \)[/tex] is exactly equal to the radius of the circle.
2. Determining the Positions of Points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
- Point [tex]\( B \)[/tex] is given such that [tex]\( BP = 8 \)[/tex] mm.
- Since [tex]\( BP \)[/tex] is greater than the radius of the circle, point [tex]\( B \)[/tex] lies outside the circle.
3. Intersection Analysis Between Line Segment [tex]\( \overrightarrow{AB} \)[/tex] and the Circle [tex]\( \odot P \)[/tex]:
- Since point [tex]\( A \)[/tex] is on the circle and point [tex]\( B \)[/tex] is outside the circle, we need to evaluate how many points the line segment [tex]\( \overrightarrow{AB} \)[/tex] intersects the circle.
4. Checking Intersection Points:
- When one endpoint of the line segment (point [tex]\( A \)[/tex]) is on the circle and the other endpoint (point [tex]\( B \)[/tex]) is outside the circle, the line segment [tex]\( \overrightarrow{AB} \)[/tex] must intersect the circumference of the circle at two distinct points because it must enter and exit the circle.
- Hence, point [tex]\( A \)[/tex] provides one intersection point (since it lies on the circle), and the segment will re-enter the circle at another distinct point before reaching point [tex]\( B \)[/tex]. This confirms two intersection points overall.
### Conclusion
From the above analysis:
- The line segment [tex]\( \overrightarrow{AB} \)[/tex] intersects the circle [tex]\( \odot P \)[/tex] at exactly 2 points.
Thus, the correct answer is 2 points, and the best fitting answer from the given choices is:
A. 1 point or 2 points
Given the specific conditions, the answer more accurately aligns with this option as two points of intersection are consistent with such scenarios.
1. Understanding the Circle and Points:
- We have a circle [tex]\( \odot P \)[/tex] with center [tex]\( P \)[/tex] and radius [tex]\( 6 \)[/tex] mm.
- Point [tex]\( A \)[/tex] is given such that [tex]\( AP = 6 \)[/tex] mm. This implies point [tex]\( A \)[/tex] is on the circle since the distance [tex]\( AP \)[/tex] is exactly equal to the radius of the circle.
2. Determining the Positions of Points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
- Point [tex]\( B \)[/tex] is given such that [tex]\( BP = 8 \)[/tex] mm.
- Since [tex]\( BP \)[/tex] is greater than the radius of the circle, point [tex]\( B \)[/tex] lies outside the circle.
3. Intersection Analysis Between Line Segment [tex]\( \overrightarrow{AB} \)[/tex] and the Circle [tex]\( \odot P \)[/tex]:
- Since point [tex]\( A \)[/tex] is on the circle and point [tex]\( B \)[/tex] is outside the circle, we need to evaluate how many points the line segment [tex]\( \overrightarrow{AB} \)[/tex] intersects the circle.
4. Checking Intersection Points:
- When one endpoint of the line segment (point [tex]\( A \)[/tex]) is on the circle and the other endpoint (point [tex]\( B \)[/tex]) is outside the circle, the line segment [tex]\( \overrightarrow{AB} \)[/tex] must intersect the circumference of the circle at two distinct points because it must enter and exit the circle.
- Hence, point [tex]\( A \)[/tex] provides one intersection point (since it lies on the circle), and the segment will re-enter the circle at another distinct point before reaching point [tex]\( B \)[/tex]. This confirms two intersection points overall.
### Conclusion
From the above analysis:
- The line segment [tex]\( \overrightarrow{AB} \)[/tex] intersects the circle [tex]\( \odot P \)[/tex] at exactly 2 points.
Thus, the correct answer is 2 points, and the best fitting answer from the given choices is:
A. 1 point or 2 points
Given the specific conditions, the answer more accurately aligns with this option as two points of intersection are consistent with such scenarios.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.