At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the problem step by step.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.