Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the problem step by step.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.