Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze Juan's steps to identify the error he made.
First, let's calculate the correct area of the circle.
1. Find the area of the circle:
- The formula for the area of a circle with radius [tex]\( r \)[/tex] is [tex]\( A = \pi r^2 \)[/tex].
- Given [tex]\( r = 4 \)[/tex] cm, substitute this into the formula:
[tex]\[ A = \pi (4)^2 = 16\pi \text{ cm}^2 \][/tex]
Next, let's determine the correct area of the sector.
2. Find the area of the sector:
- The formula for the area of a sector of a circle with a central angle [tex]\( \theta \)[/tex] is [tex]\( \text{Area of sector} = \frac{\theta}{360} \times \text{Area of the circle} \)[/tex].
- Given [tex]\( \theta = 150^\circ \)[/tex] and using the area of the circle [tex]\( 16\pi \)[/tex] cm[tex]\(^2\)[/tex]:
[tex]\[ \text{Area of sector} = \frac{150}{360} \times 16\pi \][/tex]
- Simplify the fraction:
[tex]\[ \frac{150}{360} = \frac{5}{12} \][/tex]
- Thus:
[tex]\[ \text{Area of sector} = \frac{5}{12} \times 16\pi = \frac{80\pi}{12} = \frac{20\pi}{3} \approx 20.94\ \text{cm}^2 \][/tex]
We now analyze the steps Juan took to find the area of the sector.
3. Analyze Juan's approach:
- Juan first found the area of the circle correctly: [tex]\( 16\pi \)[/tex] cm[tex]\(^2\)[/tex].
- Juan incorrectly formed the proportion [tex]\(\frac{16\pi}{a} = \frac{150}{360}\)[/tex]. This is not correct for finding the area of the sector.
Here, Juan tried to solve the incorrect equation [tex]\(\frac{16\pi}{a} = \frac{150}{360}\)[/tex]:
[tex]\[ 150a = 5760\pi \][/tex]
[tex]\[ a = 38.4\pi \][/tex]
Error Identification:
- The correct proportion to use should have been setting up the fraction of the angle to the full circle's area directly, i.e., [tex]\(\frac{\theta}{360} \times \text{area of the circle}\)[/tex].
- Thus, Juan made an error by incorrectly setting up the proportion.
Therefore, the correct identification of Juan’s mistake is:
He solved the proportion incorrectly.
First, let's calculate the correct area of the circle.
1. Find the area of the circle:
- The formula for the area of a circle with radius [tex]\( r \)[/tex] is [tex]\( A = \pi r^2 \)[/tex].
- Given [tex]\( r = 4 \)[/tex] cm, substitute this into the formula:
[tex]\[ A = \pi (4)^2 = 16\pi \text{ cm}^2 \][/tex]
Next, let's determine the correct area of the sector.
2. Find the area of the sector:
- The formula for the area of a sector of a circle with a central angle [tex]\( \theta \)[/tex] is [tex]\( \text{Area of sector} = \frac{\theta}{360} \times \text{Area of the circle} \)[/tex].
- Given [tex]\( \theta = 150^\circ \)[/tex] and using the area of the circle [tex]\( 16\pi \)[/tex] cm[tex]\(^2\)[/tex]:
[tex]\[ \text{Area of sector} = \frac{150}{360} \times 16\pi \][/tex]
- Simplify the fraction:
[tex]\[ \frac{150}{360} = \frac{5}{12} \][/tex]
- Thus:
[tex]\[ \text{Area of sector} = \frac{5}{12} \times 16\pi = \frac{80\pi}{12} = \frac{20\pi}{3} \approx 20.94\ \text{cm}^2 \][/tex]
We now analyze the steps Juan took to find the area of the sector.
3. Analyze Juan's approach:
- Juan first found the area of the circle correctly: [tex]\( 16\pi \)[/tex] cm[tex]\(^2\)[/tex].
- Juan incorrectly formed the proportion [tex]\(\frac{16\pi}{a} = \frac{150}{360}\)[/tex]. This is not correct for finding the area of the sector.
Here, Juan tried to solve the incorrect equation [tex]\(\frac{16\pi}{a} = \frac{150}{360}\)[/tex]:
[tex]\[ 150a = 5760\pi \][/tex]
[tex]\[ a = 38.4\pi \][/tex]
Error Identification:
- The correct proportion to use should have been setting up the fraction of the angle to the full circle's area directly, i.e., [tex]\(\frac{\theta}{360} \times \text{area of the circle}\)[/tex].
- Thus, Juan made an error by incorrectly setting up the proportion.
Therefore, the correct identification of Juan’s mistake is:
He solved the proportion incorrectly.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.